Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.5.285

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System  

LU, LIXIN (Department of Energy and Electrical Engineering, Woosuk University)
DAI, GUANXIA (Department of Energy and Electrical Engineering, Woosuk University)
LEE, JAEYOUNG (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University)
LEE, HONGKI (Department of Energy and Electrical Engineering, Woosuk University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.5, 2021 , pp. 285-292 More about this Journal
Abstract
To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.
Keywords
Anion exchange membrane; AEM water electrolysis; Ni nanocatalyst; Pt nanocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Seok, D. Y. Lee, and Y. B. Kim, "Hydrogen permeation properties of Ni-based amorphous alloys membrane", Trans. of the Korean Hydrogen and New Energy Society, Vol. 19, No. 1, 2008, pp. 35-40, Retrieved from https://www.koreascience.or.kr/article/JAKO200818259610109.page.
2 F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", International Journal of Hydrogen Energy, Vol. 45, No. 7, 2020, pp. 3847-3869, https://doi.org/10.1016/j.ijhydene.2019.12.059.   DOI
3 J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555.   DOI
4 M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", J. Korean Inst. Surf. Eng., Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.   DOI
5 I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: a review", Renew. Sustain. Energy Rev, Vol. 81, 2018, pp. 1690-1704, doi: https://doi.org/10.1016/j.rser.2017.05.258.   DOI
6 H. Liu and S. Liu, "Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification", International Journal of Hydrogen Energy, Vol. 46, No. 14, 2021, pp. 9630-9643, doi: https://doi.org/10.1016/j.ijhydene.2020.12.096.   DOI
7 J. H. Kim, K. H. Kim, and S. Y. Nam, "Research trends of polybenzimidazole-based membranes for hydrogen purification applications", Appl. Chem. Eng., Vol. 31, No. 5, 2020, pp. 453-466, doi: https://doi.org/10.14478/ace.2020.1054.   DOI
8 M. S. Naughton, F. R. Brushett, and P. J. Kenis, "Carbonate resilience of flowing electrolyte-based alkaline fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1762-1768, doi: https://doi.org/10.1016/j.jpowsour.2010.09.114.   DOI
9 J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.   DOI
10 C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, and M. Comotti, "Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis", Angew. Chem. Int. Ed., Vol. 53, No. 5, 2014, pp. 1378-1381, doi: https://doi.org/10.1002/anie.201308099.   DOI
11 J. Chi and H. M. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.   DOI
12 F. Qin, Y. Ma, L. Miao, Z. Wang, and L. Gan, "Influence of metal-ligand coordination on the elemental growth and alloying composition of Pt-Ni octahedral nanoparticles for oxygen reduction electrocatalysis", ACS Omega, Vol. 4, No. 5, 2019, pp. 8305-8311, doi: https://doi.org/10.1021/acsomega.8b03366.   DOI
13 T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of nickel oxide with graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147, Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.
14 A. K. Niaz, A. Akhtar, J. Y. Park, and H. T. Lim, "Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers", Journal of Power Sources, Vol. 481, 2021, pp. 229093, doi: https://doi.org/10.1016/j.jpowsour.2020.229093.   DOI
15 T. N. Veziroglu and S. N. Sahin, "21st Century's energy: hydrogen energy system", Energy Conversion and Management, Vol. 49, No. 7, 2008, pp. 1820-1831, doi: https://doi.org/10.1016/j.enconman.2007.08.015.   DOI
16 R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14686, doi: https://doi.org/10.1039/C4CC06879C.   DOI
17 R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electro-oxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/ palladium nanocomposite electrode", Vol. 44, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.   DOI
18 W. I. Park and S. K. Kang, "Analysis of safety by expansion of hydrogen charging station facilities", Journal of the Korean Institute of Gas, Vol. 24, No. 6, 2020, pp. 83-90, doi: https://doi.org/10.7842/kigas.2020.24.6.83.   DOI
19 S. Trasatti, "Water electrolysis: who first?", J. Electroanal. Chem., Vol. 476, No. 1, 1999, pp. 90-91, Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1371202.   DOI
20 R. Gazey, S. K. Salman, and D. D. Aklil-D'Halluin, "A field application experience of integrating hydrogen technology with wind power in a remote island location", J. Power Sources, Vol. 157, No. 2, 2006, pp. 841-847, doi: https://doi.org/10.1016/j.jpowsour.2005.11.084.   DOI
21 K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.   DOI
22 J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. U. Jeong, K. J. Jung, K. S. Kang, and S. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.   DOI
23 T. H. Lee, "Water electrolyzer technical overview and outlook", Journal of the Electric World, Vol. 459, 2015, p. 14, Retrieved from http://www.kea.kr/elec_journal/2015_3/2.pdf.
24 B. R. Lee, H. J. Lee, J. H. Heo, C. W. Moon, and H. K. Lim, "Stochastic techno-economic analysis of H2 production from power-to- gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.   DOI