DOI QR코드

DOI QR Code

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis

음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성

  • JAEYOUNG LEE (Hydrogen Fuel Cell Regional Innovation Center, Woosuk University) ;
  • HONGKI LEE (Hydrogen Fuel Cell Regional Innovation Center, Woosuk University)
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터)
  • Received : 2023.09.25
  • Accepted : 2023.10.25
  • Published : 2023.10.30

Abstract

Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 신재생에너지 핵심기술 개발 사업의 연구비 지원을 받아 수행된 연구임(No. 20213030040520).

References

  1. J. Han, J. Kim, K. Bae, C. Park, S. Jeong, K. Jung, K. Kang, and S. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Journal of Hydrogen and New Energy, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.
  2. K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Journal of Hydrogen and New Energy, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.
  3. S. Seok, D. Y. Lee, and Y. B. Kim, "Hydrogen permeation properties of Ni-based amorphous alloys membrane", Journal of Hydrogen and New Energy, Vol. 19, No. 1, 2008, pp. 35-40. Retrieved from https://koreascience.kr/article/JAKO200818259610109.page. 10109.page
  4. T. N. Veziroglu and S. Sahi˙n, "21st century's energy: hydrogen energy system", Energy Conversion and Management, Vol. 49, No. 7, 2008, pp. 1820-1831, doi: https://doi.org/10.1016/j.enconman.2007.08.015.
  5. T. H. Lee, "Water electrolyzer technical overview and outlook", Journal of the Electric World, Vol. 459, 2015, p. 14-17. Retrieved from https://www.kea.kr/elec_journal/2015_3/2.pdf.
  6. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chemical Communications, Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C.
  7. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", Journal of Applied Electrochemistry, Vol. 44, No. 8, 2014, pp. 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.
  8. H. N. Zhang, J. Wang, F. F. Sun, D. Liu, H. Y. Wang, and F. Wang, "Study of electroless copper plating on ABS resin surface modified by heterocyclic organosilane self-assembled film", Bulletin of Materials Science, Vol. 37, No. 1, 2014, pp. 71-76, doi: https://doi.org/10.1007/s12034-014-0615-z.
  9. M. Zenkiewicz, K. Moraczewski, P. Rytlewski, P. Stepczynska, and B. Jagodzinski, "Electroless metallization of polymers", Archives of Materials Science and Engineering, Vol. 74, No. 2, 2015, pp. 67-76. Retrieved from http://www.amse. acmsse.h2.pl/vol74_2/7423.pdf.
  10. S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, p. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002.
  11. B. Lee, H. Lee, J. Heo, C. Moon, S. Moon, and H. Lim, "Stochastic techno-economic analysis of H2 production from power-to-gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.
  12. J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.
  13. I. Vincent, E. C. Lee, and H. M. Kim, "Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production", RSC Advances, Vol. 10, No. 61, 2020, pp. 37429-37438, doi: https://doi.org/10.1039/D0RA07190K.
  14. P. Zhang, J. Lee, and H. Lee, "Preparation and characterization of Pt-Ni nanocatalyst for anion exchange membrane in alkaline electrolysis by spontaneous reduction reaction", Journal of Hydrogen and New Energy, Vol. 33, No. 3, 2022, pp. 202-208, doi: https://doi.org/10.7316/KHNES.2022.33.3.202.
  15. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", Journal of the Korean institute of surface engineering, Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.
  16. H. S. Cho, W. C. Cho, and C. H. Kim, "Low-temperature alkaline water electrolysis", KIC News, Vol. 21, No. 5, 2018, pp. 23-40. Retrieved from https://www.cheric.org/PDF/PIC/PC21/PC21-5-0023.pdf.
  17. A. Kiani and S. Hatami, "Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra lowplatinum loading electrocatalyst for hydrogen evolution reaction", International Journal of Hydrogen Energy, Vol. 35, No. 11, 2010, pp. 5202-5209, doi: https://doi.org/10.1016/j.ijhydene.2010.03.014.
  18. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800.
  19. S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Applied Catalysis B: Environmental, Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381.
  20. S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A. R. Kim, P. Sampath, D. H. Kim, and D. J. Yoo, "Novel Pt-carbon core-shell decorated hierarchical CoMo2S4 as efficient electrocatalysts for alkaline/seawater hydrogen evolution reaction", Chemical Engineering Journal, Vol. 473, 2023, pp. 145348, doi: https://doi.org/10.1016/j.cej.2023.145348.
  21. F. Qin, Y. Ma, L. Miao, Z. Wang, and L. Gan, "Influence of metal-ligand coordination on the elemental growth and alloying composition of Pt-Ni octahedral nanoparticles for oxygen reduction electrocatalysis", ACS Omega, Vol. 4, No. 5, 2019, pp. 8305-8311, doi: https://doi.org/10.1021/acsomega.8b03366.
  22. J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555.
  23. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.
  24. T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of nickel oxide with graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147-155. Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.