• 제목/요약/키워드: AC Etching

검색결과 30건 처리시간 0.024초

탄소섬유를 이용한 압력센터 제작 및 특성평가 (Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber)

  • 박창신;이동원;강보선
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.

혈전분해 응용을 위한 압전형 마이크로 외팔보의 제작 및 실험 (Fabrication and Experiment of Piezoelectric Micro Cantilever Applicable to Thrombolysis)

  • 백건훈;서영태;방용승;김종만;김성현;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.152-153
    • /
    • 2007
  • This paper describes a resonant driving piezoelectric micro cantilever practicable to ultrasound thrombolysis device for the treatment of ischemic stroke. The proposed piezoelectric cantilever was designed to be a unimorph structure of Si/$SiO_2$/Ti/Pt/PZT/Pt, and fabricated by top-down sequence etching process. The red blood cell (RBC) lysis experiment was carried out to confirm the usability of the proposed cantilever. Total 87.76 % of RBCs were ruptured using the ultrasound generated by up-down actuations of the fabricated cantilever with AC voltage having the frequency of 19.36 Hz and the magnitude of $30V_{p-p}$.

  • PDF

대기압 Ar 가스의 직류 글로우 방전 특성분석 (Analysis on DC Glow Discharge Properties of Ar Gas at the Atmosphere Pressure)

  • 소순열
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.417-422
    • /
    • 2010
  • Atmosphere Plasma of Gas Discharge (APGD) has been used in plasma sources for material processing such as etching, deposition, surface modification and so on due to having no thermal damages. The APGD researches on AC source with high frequency have been mainly processed. However, DC APGD studies have been not. In order to understand APGD further, it is necessary to study on fundamental properties of DC APGD. In this paper, we developed a one-dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). Nine kinds of Ar discharge particles such as electron (e), positive ions ($Ar^+$, $Ar_2^+$) and neutral particles ($Ar_m^*$, $Ar_r^*$, $Ar_h^*$, $Ar_2^*$(1), $Ar_2^*$(3) and Ar gas) are considered in the computation. The simulation was worked at the current range of 1~15 [mA]. The characteristics of voltage-current were calculated and the structure of Joule heating were discussed. The spatial distributions of Ar DC APGD and the mechanism of power consumption were also investigated.

Effect of CORC former and striation on magnetization loss

  • Myeonghee Lee;Byeong-Joo Kim;Miyeon Yoon;Kyeongdal Choi;Ji-Kwang Lee;Woo-Seok Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.45-49
    • /
    • 2023
  • CORC, which is being studied as one of the conductors for large currents, is manufactured by symmetrically arranging several strands of high-temperature superconducting wires on a cylindrical former. It allows current to flow evenly between wires and has the advantage of being manufactured in a multi-layer structure to increase current capacity. In order to apply CORC to AC power devices, it is necessary to review the material of the former, which is the frame around which the superconducting wire is wound. In the case of metal formers, they are difficult to apply because eddy currents are generated in the former, and they do not have the flexibility to be manufactured into coils by winding them with CORC. In this paper, we compare and analyze the magnetization loss caused by an external alternating magnetic field of Litz wire, which is being considered as a former material for CORC, with the results from formers made of other materials. In addition, we experimentally examine the effect of reducing magnetization loss due to an external magnetic field in CORC using a split wire made by dividing a high-temperature superconducting wire into two using an etching method, and in CORC made with a non-split wire.

Striation of coated conductors by photolithography process

  • Byeong-Joo Kim;Miyeon Yoon;Myeonghee Lee;Sang Ho Park;Ji-Kwang Lee;Kyeongdal Choi;Woo-Seok Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.50-53
    • /
    • 2023
  • In this study, the photolithography process was chosen to reduce the aspect ratio of the cross-section of a high-temperature superconducting (HTS) tape by dividing the superconducting layer of the tape. Reducing the aspect ratio decreases the magnetization losses in the second-generation HTS tapes generated by AC magnetic fields. The HTS tape used in the experiment has a thin silver (Ag) layer of about 2 ㎛ on top of the REBCO superconducting layer and no additional stabilizer layer. A dry film resist (DFR) was laminated on top of the HTS tape by a lamination method for the segmentation. Exposure to a 395 nm UV lamp on a patterned mask cures the DFR. Dipping with a 1% Na2CO3 solution was followed to develop the uncured film side and to obtain the required pattern. The silver and superconducting layers of the REBCO films were cleaned with an acid solution after the etching. Finally, the segmented HTS tape was completed by stripping the DFR film with acetone.

전해 콘텐사용 알루미늄박의 애칭특성에 미치는 황산첨가의 영향 II. 유전층의 조직 및 임피던스 분석 (Effects of Addition of Sulfuric Acid on the Etching Behavior of Al foil for Electrolytic Capacitors II. Microstructures of Dielectric Layers and AC Impedance Analysis)

  • 김성갑;유인종;신동철;오한준;지충수
    • 한국재료학회지
    • /
    • 제10권5호
    • /
    • pp.375-381
    • /
    • 2000
  • 전해콘텐서용 알루미늄박을 ammonium adipate 용액을 이용하여 $65^{\circ}C$에서 10분간 100V 및 140V로 각각 양극 산화시켜 산화 알루미늄 유전체를 만들었다. 유전층의 두께, 화학양론적 관계, 결정구조 등을 RBS 및 TEM을 이용하여 분석하였고, 알루미늄박의 에칭시 황산 첨가로 인한 표면적의 변화는 임피던스 분석법으로 조사 하였다. 생성된 유전피막은 100V 및 140V의 전압을 사용했을 경우 각각 약 130nm 및 190nm 두께의 비정질로 나타났으며 피막의 알루미늄과 산소원소의 화학양자론적 비는 약 2:3의 비율로 존재했다. 또한 유전피막은 전자빔은 조사에 의해 쉽게 $${\gamma}$-Al_2$$O_3$ 형태의 결정질로 변태 되었다. 염산 에칭욕에 황산 첨가시 나타나는 알루미늄박의 표면변화는 임피던스 분석결과와 정전 용략의 변화가 일치하는 경향을 나타냈다.

  • PDF

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • 동굴
    • /
    • 제76호
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

3차원 LIGA 미세구조물 제작을 위한 마이크로 액추에이터 내장형 X-선 마스크 (Deep X-ray Mask with Integrated Micro-Actuator for 3D Microfabrication via LIGA Process)

  • 이광철;이승섭
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2187-2193
    • /
    • 2002
  • We present a novel method for 3D microfabrication with LIGA process that utilizes a deep X-ray mask in which a micro-actuator is integrated. The integrated micro-actuator oscillates the X-ray absorber, which is formed on the shuttle mass of the micro-actuator, during X-ray exposures to modify the absorbed dose profile in X-ray resist, typically PMMA. 3D PMMA microstructures according to the modulated dose contour are revealed after GG development. An X-ray mask with integrated comb drive actuator is fabricated using deep reactive ion etching, absorber electroplating, and bulk micromachining with silicon-on-insulator (SOI) wafer. 1mm $\times$ 1 mm, 20 $\mu$m thick silicon shuttle mass as a mask blank is supported by four 1 mm long suspension beams and is driven by the comb electrodes. A 10 $\mu$m thick, 50 $\mu$m line and spaced gold absorber pattern is electroplated on the shuttle mass before the release step. The fundamental frequency and amplitude are around 3.6 kHz and 20 $\mu$m, respectively, for a do bias of 100 V and an ac bias of 20 $V_{p-p}$ (peak-peak). Fabricated PMMA microstructure shows 15.4 $\mu$m deep, S-shaped cross section in the case of 1.6 kJ $cm^{-3}$ surface dose and GG development at 35$^{\circ}C$ for 40 minutes.

Fabrication of Activated Carbon Fibers from Polyacrylonitrile-Derived Carbon Fibers: Investigating CO2 Adsorption Capability in Relation to Surface Area

  • Seung Geon Kim;Sujin Lee;Inchan Yang;Doo-Won Kim;Dalsu Choi
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.402-407
    • /
    • 2023
  • Activated carbon fibers (ACFs) are fibrous form of activated carbon (AC) with higher mechanical strength and flexibility, which make them suitable for building modules for applications including directional gas flow such as air and gas purification. Similarly, ACFs are anticipated to excel in the efficient capture of CO2. However, due to the difficulties in fabricating monofilament carbon fibers at a laboratory scale, most of the studies regarding ACFs for CO2 capture have relied on electrospun carbon fibers. In this study, we fabricated monofilament carbon fibers from PAN-based monofilament precursors by stabilization and carbonization. Then, ACFs were successfully prepared by chemical activation using KOH. Different weight ratios ranging from 1:1 to 1:4 were employed in the fabrication of ACFs, and the samples were designated as ACF-1 to ACF-4, respectively. As a function of KOH ratio, increase in surface area could be observed. However, the CO2 adsorption trend did not follow the surface area trend, and the ACF-3 with second largest surface area exhibited the highest CO2 adsorption capacity. To understand the phenomena, nitrogen content and ultramicropore distribution, which are important factors determining CO2 adsorption capacity, were considered. As a result, while nitrogen content could not explain the phenomena, ultramicropore distribution could provide a reasoning that the excessive etching led ACF-4 to develop micropore structure with a broader distribution, resulting in high surface area yet deteriorated CO2 adsorption.