Browse > Article
http://dx.doi.org/10.5370/KIEEP.2010.59.4.417

Analysis on DC Glow Discharge Properties of Ar Gas at the Atmosphere Pressure  

So, Soon-Youl (목포대학교 전기공학과)
Publication Information
The Transactions of the Korean Institute of Electrical Engineers P / v.59, no.4, 2010 , pp. 417-422 More about this Journal
Abstract
Atmosphere Plasma of Gas Discharge (APGD) has been used in plasma sources for material processing such as etching, deposition, surface modification and so on due to having no thermal damages. The APGD researches on AC source with high frequency have been mainly processed. However, DC APGD studies have been not. In order to understand APGD further, it is necessary to study on fundamental properties of DC APGD. In this paper, we developed a one-dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). Nine kinds of Ar discharge particles such as electron (e), positive ions ($Ar^+$, $Ar_2^+$) and neutral particles ($Ar_m^*$, $Ar_r^*$, $Ar_h^*$, $Ar_2^*$(1), $Ar_2^*$(3) and Ar gas) are considered in the computation. The simulation was worked at the current range of 1~15 [mA]. The characteristics of voltage-current were calculated and the structure of Joule heating were discussed. The spatial distributions of Ar DC APGD and the mechanism of power consumption were also investigated.
Keywords
Atmosphere Pressure; DC Glow Discharge; Fluid Model; Plasma Simulation; Argon Discharge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Morrow and N. Sato, "The discharge current induced by the motion of charged particles in time-dependent electric fields", J. Phys. D: Appl. Phys., Vol. 32, pp. L20-22 (1999)   DOI   ScienceOn
2 N. Sato and H. Tagashira, "A hybrid Monte-Carlo/fluid model of RF plasmas in a SiH4/H2 miture", IEEE Trans. Plasma Sci. Vol. 19, pp. 102-112 (1991)   DOI   ScienceOn
3 E. V. Karoulina and Yu. A. Lebedev, "Computer simulation of microwave and DC plasmas: Comparative characterisation of plasmas", J. Phys. D: Appl. Phys., Vol. 25, pp.401-412 (1992)   DOI   ScienceOn
4 Q. Wang, D.J.Economou and V.M.Donnelly, "Simulation of a direct current microplasma dicharge in helium at atmospheric pressure", J. Appl. Phys., Vol. 100, pp. 023301 (2006)   DOI   ScienceOn
5 H-B. Wang, W-T. Sun, H-P. Li, C-Y. Bao, X. Gao and H-Y. Luo, "Discharge characteristics of atmospheric pressure radio frequency glow discharges with argon/nitrogen", Appl. Phys. Lett., Vol. 89, pp. 161504 (2006)   DOI   ScienceOn
6 J. J. Shi, X. T. Deng, R. Hall, J. D. Punnett and M. G. Kong, "Three modes in a radio frequency atmospheric pressure glow discharge", J. Appl. Phys., Vol. 94, pp.6303 (2003)   DOI   ScienceOn
7 M. J. Pinheiro and A. A. Martins, "Electrical and kinetic model of an atmospheric rf device for plasma aerodynamics applications", J. Appl. Phys., Vol. 108, pp. 033301 (2010)   DOI   ScienceOn
8 F. Tochikubo, T. chiga and T. Watanabe, "Structure of low-frequency helium glow discharge at atmospheric pressure between parallel plate dielectric electrodes", Jpn. J. Appl. Phys., Vol. 38, pp. 5244-5250 (1999)   DOI
9 A. Oda and T. Kimura, "One-dimensional Fluid Simulation of Atmospheric-Pressure Helium DC Glow Discharges", IEEJ Trans. FM, Vol. 129, No. 4 (2009)
10 Y. Sakai, S. Sawada and H. Tgashira, "Effect of Penning ionization on electron swarm in Ar/Ne mixtures: Boltzmann equation analysis", J. Phys. D: Appl. Phys., Vol. 19, pp. 1741-1750 (1986)   DOI   ScienceOn
11 김재혁, 진상일, 김영민, "대기압 플라즈마 발생시 인가전압의 상승시간에 따른 영향", 전기학회논문지, Vol.57, No. 7, pp. 1218-1222 (2008)   과학기술학회마을
12 한성호, 김영민, 김재혁, "대기압 플라즈마 발생용 마이크로 전극 제작 및 저전압 동작 특성", 전기학회논문지, Vol. 56, No. 4, pp. 773-776 (2007)   과학기술학회마을
13 S. Kanazawa, M. Kogoma, T. Moriwaki and S. Okazaki, "Stable glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys., Vol. 21, pp. 838-840 (1998)
14 M. Moravej, X.Yang, R.F.Hicks, J.Penelon and S.E.Babayan, "A radio-freqency nonequilibrium atmospheric pressure plasma operating with argon and oxygen", J. Appl. Phys., Vol. 99, pp. 093305 (2006)   DOI   ScienceOn
15 X. Yuan and L. Raja, "Role of trace impurities in large-volume nobel gas atmoshpheric-pressure glow discharges", Appl. Phys. Lett., Vol. 81, pp. 814-816 (2002)   DOI   ScienceOn
16 J. Park, I. Henins, H.W. Herrmann and S. Selwyn, "Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source", J. Appl. Phys., Vol. 89, pp.20 (2001)   DOI   ScienceOn