• Title/Summary/Keyword: 5-ALA

Search Result 405, Processing Time 0.028 seconds

Fluorescence Detection for Protoporphyrin IX Induced from 5-ALA and ALA-methyl ester in Incubated Liver Cancer Cells (간암 세포주에서 5-ALA 및 ALA-methyl ester에 의해 유도된 Protoporphyrin IX의 형광 검출)

  • Kim, Myung-Hwa;Kim, Jung-Mi;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • To clarify the usefulness of fluorescent diagnosis for cancer, we investigated the optimal method of administrating 5-aminolevulinic acid (5-ALA), 5-aminolevulinic acid methyl ester (ALA-methyl ester) by analyzing fluorescence signal of Protoporphyrin IX (PpIX) in the cultured normal and cancer cells. 5-ALA and ALA-methyl ester was injected as a photosensitizer to the cancer liver cells (HepG2) and normal liver cells (Chang). Chang and HepG2 cells were incubated with various concentrations of 5-ALA and ALA-methyl ester (0-800 ${\mu}g/mL$). The accumulation of PpIX induced by 5-ALA and ALA-methyl ester was in HepG2 and Chang. The cell viability was measured by MTT assay. Fluorescence of PpIX in HepG2 cell was excited at a wavelength ($\lambda$ = 410 nm) and showed an emission spectrum at 603.2 nm, 660.8 nm and 603.2 nm, 661.4 nm which could be related to the PpIX generation induced by the applied 5-ALA and ALA-methyl ester, respectively. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA and ALA-methyl ester in tumor cells, but measured with low concentration in normal cells. Another results showed that the PpIX formation rate induced by ALA-methyl ester is higher than that of 5-ALA.

Herbicidal and Insecticidal Potentials of 5-Aminolevulinic acid, a Biodegradable Substance (생분해성 생리활성물질 5-aminolevulinic acid의 제초 및 살충활성)

  • Chon, Sang-Uk
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide and insecticide by the action of the protoporphyrinogen IX oxidase (Protox IX). The present study was conducted to determine growth responses of plant and insects to ALA, biodegradable biopesticidal substance. In the paddy condition experiment, plant height and shoot fresh weight of barnyardgrass (Echinochloa crus-galli) was more reduced by ALA than rice plants, even though both plant species show great phytotoxicity. Hairy crabgrass (Digitaria sanguinalis), a monocot weed, was more sensitive to ALA at 5mM under upland condition when ALA applied on the foliage, compared with soybean (Glycine max) as a dicot crop. ALA solutions were tested for their insecticidal and larvicidal activities against Spodaptera exigua (Hubner) and Tetranychus urticae Koch. by foliar application and leaf-dipping method. The result showed higher insecticidal activity of ALA at 10mM and its mixture with insecticide luferon against S. exigua. Strongest insecticidal activity against T. urticae was observed from the ALA solution at 10mM 72 days after application. This results show that ALA solution had potent herbicidal and insecticidal activities against agricultural pests even though their activities were lower than those of synthetic pesticides.

Production of 5-Aminolevulinic Acid (ALA) by Bacillus cereus 1-1 (Bacillus cereus 1-1 균주의 5-Aminolevulinic Acid (ALA) 생산)

  • Ahn, Kyung-Joon
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2007
  • Bacillus cereus 1-1 strain produced 2 mM of ALA in the aerobic dark condition without any inhibitor like levulinic acid. The optimum culture conditions for the ALA production were that preculture and main culture were continued for 18 hr in TCY medium, and 16 mM of organic acids like acetic acid were added at the late log phase when the pH was 6.8. And the addition of 0.3% glucose was effective at the beginning of the main culture. ALA production was continued for more than 8 hr by the addition of glutamic acid instead of acetic acid, and was inhibited by addition of $40\;{\mu}M$ gabaculine seriously. These results confirmed that B. cereus 1-1 strain produced ALA through C-5 pathway.

Effects of 5-Aminolevulinic Acid on Growth and Inhibition of Various Plant Species

  • Kuk, Yong-In;Lim, Gyeong-Seob;Chon, Sang-Uk;Hwang, Tay-Eak;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • The purpose of this study is to investigate the positive or negative effects of 5-aminolevulinic acid(ALA) on the growth of several crops and weeds, by applying a seed soaking treatment, foliar treatment, and application timing, while comparing biological activity between ALA produced by chemical synthesis (Synthetic-ALA) and extracellularly-accumulated ALA by overexpressing the hemeA gene isolated from Bradyrhizobium japonicum(Bio-ALA). Seed soaking treatment of ALA in barley (five cultivars) and wheat (five cultivars) had not shown positive effects at lower concentrations, 0.05 to 0.5 mM as well as negative effects at higher concentrations, 1 to 30 mM. In rice, there also was no positive effect by seed soaking treatment of ALA at lower concentrations, although the rice became damaged by an application of 5 and 10 mM ALA. Growth in barley cultivars, Ganghossalbori, Naehanssalbori, Songhakbori, Saessalbori, and Daehossalbori were increased up to 14%, 19-51 %, 17-64%, 18-23%, and 22-38% by ALA foliar application at lower concentrations, 0.05 to 0.5 mM, respectively. On the other hand, the growth in barley cultivars was inhibited by ALA foliar application at higher concentrations. Barley responded more positively to ALA foliar application than wheat and rice. The growth stimulation caused by ALA seed soaking treatment was less than by ALA foliar treatment. ALA treatment at the 1.5-leaf stage increased growth of barley by 19-58%, while pretreatment to seeds, post-emergence treatment at 3 days after seeding, 3-leaf stages, and 5-leaf stages had not shown positive effects. Thus, the positive effects of ALA on barley were dependent greatly upon the timing of application and its concentration. Monocots weeds were more sensitive to ALA foliar treatment than dicotyledonous weeds. A monocot weed, Setaria viridis L. was the most susceptible plant to ALA while a dicotyledonous weed, Plantago asiatica L. was the most tolerant. No significant difference in biological activity between bio-ALA and synthetic ALA on barley, wheat, rice, and weed, Ixeris dentate tested was observed. Thus, ALA produced by microorganisms would be a potent substance to be used effectively in agricultural production.

5-Aminolevulinic acid improves chicken sperm motility

  • Taniguchi, Shin;Zhu, Zhendong;Matsuzaki, Mei;Tsudzuki, Masaoki;Maeda, Teruo
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1912-1920
    • /
    • 2021
  • Objective: This study investigated the effects of 5-aminolevulinic acid (5-ALA) on the motility parameters, mitochondrial membrane depolarization, and ATP levels in chicken sperm. Methods: The pooled semen from Barred Plymouth Rock males was used. In the first experiment, the semen was diluted 4-times with phosphate-buffered saline (PBS (-)) containing various concentrations (0, 0.01, 0.05, and 0.1 mM) of 5-ALA, and then the sperm motility parameters after incubation were evaluated by computer-assisted sperm analysis (CASA). In the second experiment, the semen was diluted 4-times with PBS (-) containing 0.05 mM 5-ALA, and then sperm mitochondrial membrane depolarization and ATP levels after 1.5 h of incubation were analyzed with the MitoPT® JC-1 Assay and ATP Assay kits, respectively. In the third experiment, the semen was removed from the seminal plasma and resuspended with the mediums of PBS (-), PBS (-) supplemented with CaCl2 and MgCl2 (PBS (+)) + 5-ALA, PBS (+) + caffeine, and PBS (+) + caffeine + 5-ALA. Then, the sperm motility parameters after incubation were evaluated by CASA. In the last experiment, the semen was treated with the mediums of PBS (-), PBS (-) + 5-ALA, 5.7% glucose, 5.7% glucose + 5-ALA after removing the seminal plasma, and then the sperm motility parameters were evaluated by CASA. Results: The addition of 0.05 mM 5-ALA significantly increased the chicken sperm motility, progressive motility, linearity, average path velocity, curvilinear velocity, straight-line velocity, and the wobble. The sperm mitochondrial membrane depolarization was also increased by the 5-ALA treatment. The 5-ALA treatment decreased the sperm ATP levels. Both the caffeine treatment and glucose treatment decreased the sperm motility during incubation period. Conclusion: 5-ALA might increase sperm mitochondrial membrane depolarization to utilize the ATP for enhancing sperm movement.

Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in Rhodobacter sphaeroides (Rhodobacter sphaeroides에서 5-aminolevulinic acid 생산에 대한 850 nm 근적외선 발광다이오드 조사 효과)

  • Mo, SangJoon
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.217-223
    • /
    • 2021
  • 5-aminolevulinic acid (ALA) is a representative photosensitizer used in numerous fields including cancer diagnosis and treatment. In this study, experiments were conducted to optimize the growth of Rhodobacter sphaeroides and production of ALA through LED irradiation of various wavelengths, addition of organic acid precursors of ALA, and changes in glucose concentration. After 72 h cultivation, the 850 nm wavelength LED irradiated at the same light intensity as the incandescent lamp increased the growth of R. sphaeroides and the production of ALA about 1.5- and 1.8-fold as compared with the control, respectively (p <0.0001 and p <0.0001). As a result of culturing R. sphaeroides by irradiating an LED with a wavelength of 850 nm after adding organic acid to the final concentration of 5 mM in culture medium, the production of ALA was increased about 2.8-fold in medium supplemented with pyruvic acid compared with the control (p <0.0001). In addition, the growth of the strain and the production of ALA were increased about 2.9- and 3.4-fold in medium supplemented with 40 mM glucose compared to the control which added only 5 mM pyruvic acid, respectively (p <0.0001 and p <0.0001). The yield of ALA per cell dry mass was about 1.4 folds higher than that of the control in 20 and 40 mM glucose, respectively (p <0.001). In conclusion, the growth of R. sphaeroides and production of ALA were increased by 850 nm wavelength LED irradiation. It also optimized the growth of R. sphaeroides and production of ALA through organic acid addition and glucose concentration changes.

Production and Process Monitoring of 5-Aminolevulinic Acid (ALA) by Recombinant E. coli I. Characteristics of ALA Production (유전자 재조합 대장균에 의한 5-Aminolevulinic Acid (ALA)의 생산 및 공정 모니터링 I. ALA의 생산 특성)

  • 이종일;정상윤;서국화;한경아;조성효;백경환
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2004
  • In this study the extracellular production of 5-aminolevulinic aicd (ALA) by recombinant E. coli BL2l (DE3) pLysS harboring the plasmid pFLS45 are investigated. Optimum concentrations of succinic acid and glycine for cell growth and ALA production were found to be 30 mM and 15 mM, respectively. Levulinic acid (LA) as an inhibitor of ALAD was added to the culture medium in the end of exponential cell growth phase and its optimum concentration was 30 mM. Growth of recombinant E. coli BL2l (DE3) pLysS (pFLS45) was largely dependent upon the pH value of culture medium. When the pH of culture medium was in the range of 6.0 and 6.5, high cell mass and ALA production were obtained. IPTG induction for the expression of the fusion gene did not enhance the production of ALA. Recombinant cell grew at 30't faster than at 37$^{\circ}C$, but ALA productivity was lower than at 37$^{\circ}C$. Repeated addition of glycine, succinic acid, and LA increased the production of ALA and the inhibition of intracellular ALA dehydratase activity, with up to 1.3 g/L ALA having been produced in the cultivation.

Phytotoxic Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Biomaterial, on Rice and Barnyardgrass

  • Chon, Sang-Uk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide by the action of the protoporphyrinogen IX oxidase (Protox IX). A study was conducted to determine photodynamic herbicidal effect of ALA on seedling growth of rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv. var. oryzicola Ohwi) under dry and wet conditions. ALA effect on early plant growth of rice and barnyardgrass was greatly concentration dependant, suggesting that it promotes plant growth at very low concentration and inhibits at high concentration. No significant difference in herbicidal activity of biologically and synthetically produced ALAs on plant lengths of test plants was observed ALA exhibited significant photodynamic activity regardless of PSDIP and its duration. Significant shoot growth inhibition by ALA soaking treatment exhibited apparently, indicating that ALA absorbed through root system was translocated into shoot part of plants. ALA reduced plant heights of rice and barnyardgrass seedlings by 6% and 27%, respectively, showing more tolerant to ALA in rice under wet condition. Leaf thickness was reduced markedly by ALA with increasing of ALA concentration, due to mainly membrane destruction and severe loss of turgidity in mesophyll cells, although the epidermal was little affected. It was observed that photodynamic herbicidal activity of ALA applied by pre-and post-emergence application exhibited differently on plant species, and that the activity of ALA against susceptible plants was highly correlated with growing condition.

Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance (생분해성 광활성 물질 5-aminolevulinic acid의 제초활성)

  • Chon, Sang-Uk;Kim, Young-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced from 5-Aminolevulinic Acid in Cancerous and Normal Cells (정상 및 암 세포주에서의 5-Aminolevulinic Acid에 의해 유도된 Protoporphyrin IX의 형광 검출을 위한 In Vitro 연구)

  • Kim, Myung-Hwa;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.171-174
    • /
    • 2006
  • To clarify the usefulness of fluorescent diagnosis for cancer, We investigated the optimal method of administrating 5-aminolevulinic acid(5-ALA) by analyzing fluorescence signal of Protoporphyrin IX(PpIX) in the cultured normal and cancer cells. 5-ALA was injected as a photosensitizer to the cervico-uterine cancer cell line(HeLa) and in normal liver cells(Chang). Chang and HeLa cells were incubated with various concentrations of 5-ALA($0-800{\mu}g/ml$). The accumulation of PpIX induced by 5-ALA was in HeLa and Chang cells. The cell viability was measured by MTT assay. The optimal concentration of ALA that induced maximum levels of PpIX was $50{\mu}g/ml$ in HeLa cell cultured for 24 hours after 5-ALA injection. Fluorescence of PpIX in HeLa cell was excited at a wavelength(${\lambda}$=410 nm) and showed an emission spectrum at 602.3 nm, 659.9 nm which could be related to the PpIX generation induced by the applied 5-ALA. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA in cancer cells, but measured with low concentration in normal cells.