Browse > Article

Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance  

Chon, Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology)
Kim, Young-Min (Donguinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
Publication Information
The Korean Journal of Pesticide Science / v.11, no.1, 2007 , pp. 38-45 More about this Journal
Abstract
Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.
Keywords
${\delta}$-aminolevulinic acid; photodynamic; herbicidal potential; residual phytotoxic effect; eco-friendly weed control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hotta, Y. and K. Watanabe (1999) Plant growthregulating activities of 5-aminolevulinic acid, Syo kubutu-no-Kagaku-Tyousetu (Chem. Regul. Plants). 34:85-96
2 Menon, I. A., S. D. Persad and H. F. Haberman (1989) A comparison of the phytotoxicity of protoporphyrin, coproporphyrin, and uroporphyrin using a cellular system in vitro. Clin. Biochem. 22:197-200   DOI   ScienceOn
3 Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz (1988b) Photodynamic insecticides I. Concept and phenomenology. Pesticide Biochem. Physiol. 30:11-27   DOI
4 Rebeiz, C. A., S. M. Wu, and M. Kuhadje, H. Daniel and E.J. Perkins (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58:97 -125
5 Choi, C., B. S. Hong, H. C. Sung, H. S. Lee and J. H. Kim (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters. 21:551-554   DOI   ScienceOn
6 Chon S. U. (2003) Herbicidal activity of &aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48:50-55   과학기술학회마을
7 Hopf, F. R. and D. G. Whitten (1978) Chemical transformations involving photoexcited porphyrins and metalloporphyrins. In D. Dolphin (Ed.), The Porphyrins. Vol. 2. Academic Press. NY. 1978. pp.191-195
8 Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350-382   DOI
9 Tripathy, B. C. and N. Chakraborty (1991) 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96:761 -767   DOI   ScienceOn
10 Askira, Y., B. Rubin and H. D. Rabinowitch (1991) Differential response to the herbicidal activity of $\delta$-aminolevulinic acid in plants with high and low SOD activity. Free Rad. Res. Comms. 12-13:837 -843
11 Duke, S. O., J. Lydon, J. M. Becerril, T. D. Sherman, L. P. Lehnen and H. Matsumoto (1991) Protoporphy-rinogen oxidase-inhibiting herbicides. Weed Sci. 39:465 -473
12 Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai (1997) Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation 22:109-114   DOI   ScienceOn
13 Beale, S. I. (1978) $\delta$-aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann. Rev. Plant Physiol. 29:95 -120   DOI
14 Sasaki, K., T. Tanaka and S. Nagai (1998) Use of photosynthetic bacteria for the production of SCP and chemicals. pp.247 -291. In Bioconversion of Waste Materials to Industrial Products, 2nd ed., (ed. Martin, A. M), Blackie Academic and Professional
15 Schuimaker, J. J., P. Baas, L. M. van Leengoed, F.W. van der Meulen, W. M Star and N. van Zandwijk (1999) Photodynamic therapy: a promising new modality for treatment of cancer. J. Photochem. Photobiol. 34:3 -12
16 Scalla, R. and M. Matringe (1994) Inhibitors of protoporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6: 103 -132
17 Beale, S. I. and P. A. Castelfranco (1974) The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C-\delta$-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53:297 -303   DOI   ScienceOn
18 Weinstein, J. D. and S. I. Beale (1983) Separate physiological roles and sub-cellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258:6799-6807   PUBMED
19 Avissar, Y. J., J. G. Ormerod and S. I. Beale (1989) Distribution of 5-aminolevulinic acid acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151:513 -519   DOI
20 Rebeiz, C. A., A. Motazer-Zouhoor, J. M Mayasich, B. C. Tripathy, S. M. Wu and C. C. Bebiz (1988a) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6:385-486   DOI
21 Beale, S. I. and J. D. Weinstein (1990) Tetrapyrrole metabolism in photosynthetic organisms. In Biosynthesis of Heme and Chlorophylls (Ed.), Dailey, H. A. pp.287 - 391. McGraw-hill, New York
22 Wettstein, D. v., S. Gough and C. G. Kannangara (1995) Chlorophyll biosynthesis. Plant Cell 7:1039-1057   DOI   ScienceOn
23 Kuramochi, H., M. Konnai, T. Tanaka and Y. Horta. (1997) Method for improving plant salt tolerance. US patent 5661111
24 Mock, H. P., U. Keetman and B. Grimm (2002) Photosensitising tetrapyrroles induce antioxidative and pathogen defense responses in plants. pp.155 -170. In Oxidative Stress in Plants, (eds. Inze, D. and M van Montagu), Taylor and Francis, London, NY
25 Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Jopen and S. M Wu. (1984) Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6:390-401   DOI   ScienceOn
26 Rebeiz, C. A., K. N. Reddy and U. B. Nandilhalli (1990) Tetrapyrrole-dependent photodynamic herbicide. Photochem. Photobiol. 52: 1099 -1117   DOI
27 Sasaki, K., S. Ikeda, Y. Nishizawa and M. Hayashi. (1987) Production of $\delta$-aminolevulinic acid from photosynthetic bacteria. J. Ferment. Technol. 65:511-515   DOI   ScienceOn
28 Lermontova, I. and B. Grimm (2000) Overexpression of plastic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75 -83   DOI
29 Boger, P. and K. Wakabayashi (1999) Peroxidizing herbicides. Springer, Berlin, Heidelberg
30 Kuk, Y. I., G. S. Lim, S. U. Chon, T. E. Hwang and J. O. Guh (2003) Effect of 5-aminolevulinic acid on growth and Inhibition of various plant species. Kor. J. Crop Sci. 48:127-133
31 Papenbrock, J. and B. Grimm (2001) Regulatory network of tetrapyrrole biosynthesis - studies of intracellular signaling involvedin metabolicand developmental control of plastids. Planta 213:667-681   DOI