Browse > Article

Production of 5-Aminolevulinic Acid (ALA) by Bacillus cereus 1-1  

Ahn, Kyung-Joon (Department of Science Education, Seowon University)
Publication Information
Korean Journal of Microbiology / v.43, no.4, 2007 , pp. 304-310 More about this Journal
Abstract
Bacillus cereus 1-1 strain produced 2 mM of ALA in the aerobic dark condition without any inhibitor like levulinic acid. The optimum culture conditions for the ALA production were that preculture and main culture were continued for 18 hr in TCY medium, and 16 mM of organic acids like acetic acid were added at the late log phase when the pH was 6.8. And the addition of 0.3% glucose was effective at the beginning of the main culture. ALA production was continued for more than 8 hr by the addition of glutamic acid instead of acetic acid, and was inhibited by addition of $40\;{\mu}M$ gabaculine seriously. These results confirmed that B. cereus 1-1 strain produced ALA through C-5 pathway.
Keywords
5-aminolevulinic acid (ALA); Bacillus cereus; C-5 pathway;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Li, J.M., C.S. Russel, and D. Cosloy. 1989. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82, 209-217   DOI   ScienceOn
2 Murakami, K., Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the gene encoding glutamate 1-semialdehyde 2,1-aminomutase, which is involved in $\delta$-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl. Environ. Microbiol. 59, 347-350   PUBMED
3 Petricek, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172, 2250-2258   DOI   PUBMED
4 Sasaki, K., T. Tanaka, N. Nishio, and S. Nagai. 1993. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett. 15, 859-864
5 Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58, 23-29   DOI
6 Schneegurt, M.A. and S.I. Beale. 1988. Characterization of the RNA required for biosynthesis of $\delta$-aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UCC glutamate anticodon is general requirement for function in ALA biosynthesis. Plant Physiol. 86, 497-504   DOI   ScienceOn
7 Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6, 127-135
8 Bradshaw, R.E., S.W.C. Dixon, D.C. Raitt, and T.M. Pillar. 1993. Isolation and nucleotide sequence of the 5-aminolevulinic acid synthase gene from Aspergillus nidulans. Curr. Genet. 23, 501-507   DOI
9 Asahara, N., K. Murakami, S. Korbrisate, Y. Hashimoto, and Y. Murooka. 1994. Cloning and characterization of the hemA gene for synthesis of $\delta$-aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 40, 846-850   DOI   PUBMED
10 Weinstein, J.D. and S.I. Beale. 1985. Enzymatic conversion of glutamate to $\delta$-aminolevulinate in soluble extracts of the unicellular green algae, Chlorella vulgaris. Archiv. Biochem. Biophy. 237, 454-464   DOI   ScienceOn
11 Kuramochi, H., M. Konnai, T. Tanaka, and Y. Hotta. 1997. Method for improving plant salt tolerance. US patent 5-661-111
12 Neidle, E.L. and S. Kaplan. 1993. Expression of Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthetase isozymes. J. Bacteriol. 175, 2292-2303   DOI   PUBMED
13 Murakami, K., S. Korbsrisate, N. Asahara, Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the glutamate 1-semialdehyde 2,1-aminomutase gene from Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 38, 502-506   PUBMED
14 Andersen, T., T. Briseid, T. Nesbakken, J. Ormerod, R. Sirevag, and M. Thorud. 1983. Mechanisms of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiol. Lett. 19, 303-306   DOI
15 Hansson, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173, 2590-2599   DOI   PUBMED
16 Beale, S.J. and P.A. Castelfranco. 1984. The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$ $\delta$-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53, 297-303
17 Choi, C., B.S. Hong, H.C. Sung, H.S. Lee, and J.H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthetase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21, 551-554   DOI   ScienceOn
18 Verkamp, E. and B.A. Chelm. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J. Bacteriol. 171, 4728-4735   DOI   PUBMED
19 Grimm, B. 1990. Primary structure of a key enzyme in plant tetrapyrrole synthesis : glutamate 1-semialdehyde aminotransferase. Proc. Natl. Acad. Sci. USA 87, 4169-4173
20 Kennedy, J.C., R.H. Pottier, and D.C. Pross. 1990. Photodynamic therapy with endogenous protoporphyrin IX : basic principles and present clinical experience. J. Photochem. Photobiol. 6, 143-148   DOI   ScienceOn
21 Sato, K., K. Ishida, M. Shirai, and S. Shimizu. 1985. Occurrence and some properties of two types $\delta$-aminolevulinic acid synthase in a facultative methylotroph, Protaminobacter ruber. Agricul. Biol. Chem. 49, 3423-3428   DOI
22 Nishikawa, S. and Y. Murooka. 2001. 5-Aminolevulinic acid : Production by fermentation, and agricultural and biomedical applications. Biotech. Genet. Eng. Rev. 18, 149-170   DOI   ScienceOn
23 Tai, T.N., M.D. Moore, and S. Kaplan. 1988. Cloning and characterization of the 5-aminolevulinic acid synthetase gene(s) from Rhodobacter sphaeroides. Gene 70, 139-151   DOI   ScienceOn
24 Hotta, Y. and K. Watanabe. 1999. Plant growth-regulating activities of 5-aminolevulinic acid. Syokobutu-no-Kagaku-Tyou-seti (Chemical regulation of plants). 34, 85-96
25 Sasikala, C., C.V. Ramana, and R. Rao. 1994. 5-aminolevulinic acid : A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10, 451-459   DOI   ScienceOn
26 Sasaki, K., S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of 5-aminolevulinic acid by photosynthetic bacteria. J. Ferment. Technol. 65, 511-515   DOI   ScienceOn
27 Drolet, M., L. Peloquin, Y. Eccjelard, L. Cousiineau, and A. Sasarman. 1989. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K-12. Mol. Gen. Genet. 216, 347-352   DOI
28 Grimm, B., A. Bull, and V. Btreu. 1991. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in cyanobacterium and Escherichia coli. Mol. Gen. Genet. 225, 1-10   PUBMED
29 Rebeiz, C.A., A. Montazer-Zouhoor, H.J. Hopen, and S.M. Wu. 1984. Photodynamic herbicide. I. Concept and phenomology. Enzyme Microbial Technol. 6, 390-401   DOI   ScienceOn
30 Sasaki, K., T. Tanaka, and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic waste. In A.M. Martin (ed.), Bioconversion of waste materials to industrial products, second edition. Blackie Academic and Professional. pp. 247-291
31 Weinstein, J.D. and S.I. Beale. 1985. RNA is required for enzymatic conversion of glutamate to $\delta$-aminolevulinate by extracts of Chlorella vulgaris. Archiv. Biochem. Biophy. 239, 87-93   DOI   ScienceOn
32 Houghton, J.D., L. Turner, and S.B. Brown. 1988. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium. Biochem. J. 254, 907-910   DOI   PUBMED
33 May, B.K., I.A. Brothwick, G. Srivastava, A. Pirola, and W.H. Elliott. 1986. Control of 5-aminolevulinic acid synthase in animals. Curr. Top. Cell Regul. 28, 233-261   PUBMED
34 Li, J.M., H. Umanoff, R. Proenca, and S.D. Russel. 1988. Cloning of the Escherichia coli K-12 hemB gene. J. Bacteriol. 170, 1021-1025   DOI   PUBMED
35 Sasaki, K., S. Ikeda, T. Konishi, Y. Nishizawa, and M. Hayashi. 1989. Influence of iron on the excretion of 5-aminolevulinic acid by photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 68, 378-381   DOI
36 Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32, 727-731   DOI
37 Volland, C. and F. Felix. 1984. Isolation and properties of 5-aminolevulinic acid synthetase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 142, 551-557   DOI   ScienceOn
38 Kaneko, S., T. Aoki, H. Nanato, N. Miyoshi, S. Houki, and Y. Fukuda. 1998. Intraoperative photodynamic diagnosis of human glioma using 5-ALA induced protoporphyrin IX. Iwamizawa-siritu Sougou Byouin-shi. 24, 71-79
39 Urban-Grimal, D., V. Ribes, and R. Labbe-Bois. 1984. Cloning by genetic complementation and restriction mapping of a yeast HEM1 gene coding for 5-aminolevulinate synthase. Curr. Genet. 8, 327-331   DOI   ScienceOn
40 Burnham, B.F. 1970. $\delta$-Aminolevulinic acid synthetase (Rhodopseudomonas sphaeroides). Methods Enzym. 17A, 195-204
41 MaClung, R., J.E. Somervill, M.L. Guerinot, and B.K. Chelm. 1987. Structure of Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54, 133-139   DOI   ScienceOn
42 Stanley, J., D.N. Dowling, and W.J. Broughton. 1988. Cloning of hemA from Rhizobium sp. NGR234 and a symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol. Gen. Genet. 215, 32-37   DOI
43 Rebeiz, C.A., J.A. Juvik, and C.C. Rebeiz. 1988. Photodynamic insecticide. I. Concept and Phenomology. Pesticide Biochem. Physiol. 30, 11-27   DOI
44 Kim, H.S., G.G. Choi, M.N. Moon, Y.K. Yang, and Y.H. Rhee. 2002. Biosynthesis of polyhydroxyalkanoates and 5-aminolevulinic acid by Rhodopseudomonas sp. KCTC 1437. Kor. J. Microbiol. 38, 144-151
45 Sasaki, K., N. Noparatnaraporn, Y. Nishizawa, M. Hayashi, and S. Nagai. 1988. Production of herbicide, 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. Annual Reports of International Center of Cooperative Research in Biotechnology (Osaka University, Japan) 11, 375-378
46 Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1991. Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. J. Ferment. Bioengineer. 71, 403-406   DOI   ScienceOn
47 Mariet, J., V.D. Werf, and J.G. Zeikus. 1996. 5-Aminolevulinic acid production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62, 3560-3566   PUBMED