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Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable
Photodynamic Substance
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Abstract : Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types
of -aminolevulinic acid (ALA), microbiologicallyproduced ALA (BiocALA) and synthetically produced ALA
(SyntheticALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth
was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and
post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with
many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in
herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of
Chinese cabbage was observed. However, residual biological activity and physicochemical properties of
SyntheticALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential
with both pre- and postemergence application, and that the chemical may be a valuable mean of ecofriendly
weed control based on natural microbial substance.(Received February 1, 2007; accepted March 16, 2007)
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INTRODUCTION

Porphyrin compounds play an essential role in plant
metabolism. The porphyrin ring structure is derived from
S-aminolevulinic acid (ALA). In plants, algae, and a few
bacteria, ALA is formed from the fivecarbon skeleton
of glutamate in unit of the C5 pathway (Beale, 1978,
Wettstein ef al, 1995). This pathway utilizes glutamyl-
tRNA glutamyltRNA  hydrogenase,
glutamate-1-semi-aldehyde aminotransferase to carry out

synthetase, and
three sequential enzymatic reactions that produce ALA
from glutamate (Beal and Castelfranco, 1974). In the
fourcarbon (C4) pathway, which is present in animals
and microorganisms, ALA is formed by the enzyme 5-
aminolevulinic acid synthetase (ALAS), which catalyzes
the
succinylcoenzyme A (succinyl-CoA) (Avissar et al,

pyridoxal phosphate-dependent condensation of
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1989). A few microorganisms have both C4 and C5
pathways, as is distinct in Euglena gracilis (Weinstein
and Beale, 1983).

ALA is very expensive because it is usually
In

contrast, microbiological production of ALA involves

synthesized chemically via complex processes.
simple reactions. Therefore, biological production using
microorganisms has been suggested as an inexpensive
way to produce ALA. Sasaki er al. (1987) observed the
extracellular accumulation of ALA by Rhodobacter
sphaeroides up to 16 mM at neutral pH with levulinic
acid addition using a volatile fatty acids medium.
Another approach to achieving ALA production is by
metabolic pathway engineering. Extracellular accumu-
lation of ALA by an E. coli overexpressing ALA
synthase was achieved by inserting a hemeA gene from
Bradyrhizobium  japonicum and expressed under the
control of T7 promoter (Choi et al., 1999).

The biosynthesis of porphyrin is tightly regulated at

several levels to coordinate apoprotein synthesis with
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cofactor availability and to avoid the accumulation of
the intermediates, protoporphyrin IX (Proto IX) and
protochlorophyllide (Pchlide), which are photosensitive to
light, generating reactive oxygen species, at the stage
preceding chlorophyll(Chl) biosynthesis (Papenbrock and
Grimm, 2001).
damage if these control mechanisms are circumvented,
e.g., by feeding early intermediates like ALA or by the
action of protoporphyrinogen IX oxidase (Protox)-
inhibiting herbicides, producing an accumulation of
excess Proto IX (Menon et al, 1989, Boger and
Wakabayashi,1999; Mock et al, 2002). The damage is
accompanied by the

Plants suffer severe photodynamic

destruction of photosynthetic
reactions and is irreversible. When ALA-treated plants
are exposed to sunlight, excess tetrapyrroles absorb the
energy that is normally used for photochemical reactions
and use it instead to photosensitize the production of
'0, (Hopf and Whitten, 1978; Tripathy and Chakraborty,
191). 'O, lipids,
generating free radicals, which damage the membrane
system and lead to the death of the plant. Therefore,
ALA has been proposed as a selective and
biodegradable herbicide and insecticide (Rebeiz et al,
1984 and 1988b). However, no study on residual effects
of ALA in soil or soil fractions has been reported.

In addition, ALA has agricultural applications as a
growth-promoting factor (Sasaki et al, 1998) and as an
agent to confer salt and cold tolerance to plants
(Kuramochi er al, 1997, Hotta and Watanabe, 1999).
ALA at low concentrations elicited 10-60% promotive

oxidizes unsaturated membrane

effects on the growth and yield of several crops and
vegetables, including radish, kidney beans, barley,
potatoes, and garlic (Hotta et al, 1997). Cotton
seedlings treated with ALA were able to grow in soil
containing 1.5% NaCl (Kuramochi et al, 1997); ALA
application increased the survival of rice plants at 5°C
by 40-50% (Hotta and Watanabe, 1999). Further
agricultural applications of ALA, including color
intensification of apples, nitrate reduction of vegetables,
and greencolor maintenance of grass, have been
reported (Hotta and Watanabe, 1999).

ALA  was tetrapyrrole-dependent
photodynamic herbicides (TDPH) that force green plants

to  accumulate of metabolic

named  as

undesirable  amount

intermediates (protoporphyrin IX) of the chlorophyll and
heme metabolic pathway in darkness, namely tetrapyrrole
(Rebeiz et al., 1990) or as a ‘laser’ herbicide that is
photodynamic (Rebeiz et al., 1984). Under the light, the
accumulated tetrapyrroles photosensitize the formation of
singlet oxygen that kills the treated plants by oxidation
of their cellular membranes as like diphenyl ether (DPE)
herbicides. A variety of DPE herbicides such as
acifluorfenmethyl, oxadiazone, and oxyfluorfen -cause
rapid peroxidative photobleaching and desiccation of
green plant tissues (Duke et al, 1991; Scalla and
Matringe, 1994). The target site of action of these
herbicides has been well known to be protopor-
(Protox), which
oxidation of protoporphyrinogen IX (Protgen IX) to

phyrinogen  oxidase catalyzes the
protoporphyrin  IX (Proto IX), in the biosynthesis of
hemes and chlorophylls (Duke et al, 1991; Beale and
Weinstein, 1990).

The present study was conducted to determine
residual herbicidal activity of ALA on cabbage through
pre- and postemergence applications. The fundamental
study would be useful for development of ALA as a
new bioherbicide that is biodegradable, environmentally
sound, and safe to human, animals and crops.

MATERIALS AND METHODS

Chemicals

ALA produced by overexpressing the hemA gene
isolated from Bradyrhizobium japonicum (Choi et al.,
1999) was providled by Envirogen Co., Korea
(Bio-ALA). ALA production by this method was around
30 mM. To compare the biological activity with
BiorALA, synthetically-produced ALA (syntheticcALA)
was purchased from Sigma Chemical Co. (St. Louis,
MO, USA).

Concentration Responses of Bio- and SyntheticALAs
on Chinese Cahbage

Chinese cabbage was used for testing the difference
of biological activity on between Bio-ALA and Synthetic
-ALA. Stock solution of two kinds of ALA was
diluted with distilled water to give final concentrations
ranged from 10° to 10°M. Four milliliters of each
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diluted solution was pipetted into the petri dishes with
Whatman No. 2 filter paper. The distilled water was
used as the control. Twenty seeds of Chinese cabbage
were evenly placed on filter paper wetted with the ALA
solution in each petri dish. The petri dishes were
covered, sealed by wrapping with parafilm, and placed
flat in a growth chamber maintained at 24°C during
thel4h light period and 22°C during the 10-h dark
period. Plates were illuminated with 180 pmol photons
m” s' PAR provided by a mixture of incandescent and
fluorescent lamps. Shoot length and chlorophyll content
(Lichtenthaler, 1987) were measured on all seedlings in
each petri dish at 6 days after incubation.

Response of Seedling Ages to ALA

Growth conditions were the same as those described
in the previous section. Two types of ALAs, BioALA
and SyntheticcALA, at 2 mM mixed with Tween 80
were foliar applied at four different growth stages; 2, 3,
4, and 5 leaf stages of Chinese cabbage grown in pot
(40 x 60 x 12 cm) filled with silt-loam soil. A 15 ml
of ALA solution was applied with handy sprayer at
6:00 PM. After application, postspray dark incubation
period was kept for 14 hrs, and next morning exposed
to the natural sunlight ranged from 1000 to 1500 pmol
photons m” s' to elicit photodynamic damage. Fresh
weight was measured on all seedlings 7 days after
exposure to sunlight.

Residual Effect of ALA on Seedling Growth and
Chlorophyll Content

To determine the persistence of SyntheticALA
performance when applied into soil surface, residual
amount and herbicidal activity of ALA were measured.
Growth conditions were the same as those described
above. Aqueous solutions of 0, 4, 8, and 12 mM ALA
were prepared for the experiment.

Pot 40 x 60 x 12 cm) was filled with 4 kg
silt-loam soil, and added with 4 L-ALA solution of each
concentration. Seeds of Chinese cabbage were planted on
the pot at S-day interval for 20 days.

Fresh weight and chlorophyll content of Chinese
cabbage were measured on all seedlings 10 days after

planting.

Change in Stability and Content of Bio- and
SyntheticALA

To determine stability of 16 mM-ALA stored at room
temperature for 150 days, two types of ALA were
analyzed by Lermontova and Grimm method (2000) at
50-day interval. To 10 gL of supemnatant, 0.5 mL of 1
M sodium acetate buffer (pH 4.7), 0.5 mL of D.W,
and 50 uL of acetylacetone (2,4-petanedione) were
added, and then tubes were kept in boiling water for 15
min. After cooling, 3 ml of freshly prepared modified
Ehrlich’s reagent (lg p-dimethylaminobenzaldehyde, 30
ml glacial acetic acid, 8 mL 70% (v/v) perchloric acid
and 12 mL acetic acid) was added. The A553 of the
mixture was measured after 15 min at room temperature.
In addition,
Synthetic-ALAs stored at room temperature was assayed
on filter paper treated with 2mM at 50-day interval for
150 days. Soil samples applied with ALA aqueous
solutions of 0, 4, 8, and 12 mM were analyzed at 5-day
interval for 20 days.

biological activity of Bio- and

RESULTS AND DISCUSSION

Concentration Responses of Bio- and SyntheticALAs
on Chinese Cabbage

ALA at 10°M treated with preemergence application
significantly reduced shoot growth of Chinese cabbage.
Bio- and SyntheticALAs at 10°M apparently reduced
plant height of Chinese cabbage by 63 and 60%,
1). No
significant differences in herbicidal activity between two
types of ALA on plant height of Chinese cabbage were

respectively, compared with control (Fig.

observed. However, lower concentrations of ALA did
not affect shoot growth of Chinese cabbage. In an
earlier study, Chon (2003) reported that cotyledons of
Chinese cabbage were severely bleached at 0.5 mM of
ALA 24 hrs after application, and the root growth was
significantly inhibited with increase of concentration
when applied with pre-emergence. Kuk et al. (2003) also
found that no significant differences in biological activity
between bioALLA and synthetic ALA on barley, wheat,
rice, and weed, Ixeris dentate tested were observed.
Chinese cabbage cotyledones treated with ALA of 10°
M were completely bleached within 24 h after light
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exposure (Data not shown). Bio- and SyntheticALAs at
10° M reduced chlorophyll contents of Chinese cabbage
by 79 and 86%, respectively, compared with control.
However, lower concentrations of ALA did not affect
chlorophyll content of Chinese cabbage, showing even
more chlorophyll synthesis than control (Fig, 1).
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Fig. 1. Effects of Bio- and SyntheticcALA on shoot
length (upper) and chlorophyll content (bottom) of
Chinese cabbage at 6 days after preemergence
application.

ALA is not harmful to crops, animals, and humans,
and used as a prodrug for photodynamic diagnosis and
therapy of cancer (Schuimaker et al., 1999). However,
SyntheticcALA is very expensive because it is usually
synthesized chemically via complex processes. Therefore,
biological production using microorganisms has been

suggested as a less expensive way to produce ALA.

Response of Seedling Age to ALA

Difference in selectivity among seedling ages to ALA
was examined in greenhouse experiment. ALA at 2 mM
reduced shoot fresh weights of Chinese cabbage with 2-,

3, 4, and 5-leaf stage by 5762, 51-52, 4041, and 13-
25%, respectively. The results showed that older plants
were less affected by ALA than younger plants, showing
less injury. However, no significant difference in
herbicidal activity between two types of ALA on shoot
fresh weight of Chinese cabbage was observed (Fig. 2).
Rebeiz et al. (1983) suggested that photodynamic
herbicides exhibit a very pronounced organ, age, and
speciesdependent selectivity. Chon (2003) reported that
post-emergence application of ALA exhibited the greatest
photodynamic activity against test plants, and that
Chinese cabbage was the most susceptible to ALA.
Symptoms of photodynamic injury within the first 1
hour after exposure to light after postspray dark
incubation period for 15hrs became apparent. Initial
symptoms appeared on green foliage of susceptible
plants as isolated bleached spots contiguous. Bleaching
was accompanied by severe loss of turgidity followed
by desiccation. Within 24 hrs the green plant tissue
turned into a brownish desiccated mass of dead tissue
(Data not shown).
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Fig. 2. Effects of Bio- and SyntheticALA on fresh
weight of Chinese cabbage with different leaf ages 6
days after application.

Residual Effect of ALA on Seedling Growth of
Chinese Cabbage

Various solutions of ALA ranged from 4 to 12 mM
were soil-applied. Chinese cabbage seeds were planted
on the soil at 5-day interval. At 10 days after ALA
application, shoot fresh weight of Chinese cabbage
investigated was significantly reduced up to 5 days after

application regardless of application concentration. At 0
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day after soil application, ALA of 4, 8, and 12 mM
reduced shoot growth of Chinese cabbage by 49, 70,
and 79%, respectively, compared with control. However,
from 5 to 20 days after soil application, ALA applied
did not affect shoot growth of Chinese cabbage (Fig. 3).
On the other hand, chlorophyll content of Chinese
cabbage was significantly affected by ALA with
increasing of ALA concentration, until 10 days after
application. However, at 15 days .after application,
chlorophyll content of Chinese cabbage was not affected
by ALA (Fig. 3).
The vphysiological actions of ALA at high
concentrations suggests that ALA increases the levels of
porphyrin  intermediate such as protochlorophyllide,
protoporphyrin IX, and Mgprotoporphyrin IX abnormally,
and the accumulated tetrapyrroles act as a photo-
sensitizer for the formation of singlet oxygen triggering
photodynamic damage (Askira et al, 1991; Rebeiz er
al., 1984). Thus, in other study the selectivity among
plant species would be based on tetrapyrrole accumu-

lating capabilities and the tetrapyrrole metabolism in
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Fig. 3. Residual effects of ALA on fresh weight (upper)
and chlorophyll content (bottom) of Chinese cabbage.

various plant species (Rebeiz et al., 1988a).

Change in Stability and Content of Bio- and
SyntheticcALA

BioALA was less stability in chemical properties than
was SyntheticALA. At 150 days after storing, BiocALA
concentration was reduced by 13% comparing with
original ALA concentration 16 mM. On the other hand,
SyntheticALA concentration was not affected under the
(Fig. 4.
Biological activity of BiocALA was gradually reduced by
18% 150 days after storing, comparing with original
ALA concentration. Bio-ALA concentration was more
reduced than was SyntheticALA,
persistence in biologically-produced ALA (Fig. 4). These
results indicate that variations in stability and activity
persistence of ALA exhibited, and that appropriate
technologies could be developed for making industrial
production technically feasible.

On the other hand, soil samples applied with various
solutions of ALA ranged from 4 to 12 mM were
collected at 5-day interval to analyze ALA content. The
results showed that at O-days after soil application, more

same condition, showing more stability

showing less

ALA content in the soil was detected with increasing of
ALA treatment concentration. However, ALA in the soil
was not detected 5 days treatment, indicating that ALA
applied in soil could leach into downward or adsorb to
organic matters. These findings could be correlated with
the results of residual biological activity of ALA (Fig.
5). However, further investigations also needed to
elucidate the fate of the ALA in soil.

In conclusion, ALA has been proposed as a tetrapyrrole-
dependent photodynamic herbicide and biodegradable
plant growth enhancer, by the action of the proto-
porphyrinogen IX oxidase (Protox IX). Effect of ALA
on early plant growth was greatly concentration
dependant, showing significant inhibition at higher
concentrations. The present study was conducted to
determine residual phytotoxic effects of ALA, a biode-
gradable herbicidal substance under different conditions.
No significant difference in herbicidal activity of two
types of ALA, BiocALA and SyntheticALA on plant
height and chlorophyll content of Chinese cabbage was
observed. Both pre- and postemergence application of
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Fig. 4. Change in concentration (upper) and herbicidal
activity (bottom) of Bio- and SyntheticALA solutions
by time. Effect of herbicidal activity on alfalfa was
conducted every 50 days after seeding on filter paper
treated with 2mM ALA.
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Fig. 5. Change in concentration of ALA in the soil at
0, 5, 10, 15, and 20 days after soil application.

ALA exhibited significant degree of photodynamic
phytotoxicity. Older plants with many leaves were less

affected by ALA than younger plants, showing less

injury. However, residual biological activity and physico-
chemical properties of SyntheticALA exhibited more
stably than those of BiorALA. With appropriate
technologies, the variations in stability and activity
persistence of ALA should be improved for making
industrial production technically feasible. Our results
suggest that ALA had herbicidal potential with both pre-
and postemergence application, and that the chemical
may be a valuable means of ecoftiendly weed control
based on natural substances.
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