DOI QR코드

DOI QR Code

Phytotoxic Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Biomaterial, on Rice and Barnyardgrass

  • Chon, Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology)
  • Published : 2006.09.30

Abstract

ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide by the action of the protoporphyrinogen IX oxidase (Protox IX). A study was conducted to determine photodynamic herbicidal effect of ALA on seedling growth of rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv. var. oryzicola Ohwi) under dry and wet conditions. ALA effect on early plant growth of rice and barnyardgrass was greatly concentration dependant, suggesting that it promotes plant growth at very low concentration and inhibits at high concentration. No significant difference in herbicidal activity of biologically and synthetically produced ALAs on plant lengths of test plants was observed ALA exhibited significant photodynamic activity regardless of PSDIP and its duration. Significant shoot growth inhibition by ALA soaking treatment exhibited apparently, indicating that ALA absorbed through root system was translocated into shoot part of plants. ALA reduced plant heights of rice and barnyardgrass seedlings by 6% and 27%, respectively, showing more tolerant to ALA in rice under wet condition. Leaf thickness was reduced markedly by ALA with increasing of ALA concentration, due to mainly membrane destruction and severe loss of turgidity in mesophyll cells, although the epidermal was little affected. It was observed that photodynamic herbicidal activity of ALA applied by pre-and post-emergence application exhibited differently on plant species, and that the activity of ALA against susceptible plants was highly correlated with growing condition.

Keywords

References

  1. Sasaki, K., Ikeda, S., Nishizawa, Y., and Hayashi, M. (1987) Production of $\delta$-aminolevulinic acid from photosynthetic bacteria. J. Ferment. Technol. 65, 511-515 https://doi.org/10.1016/0385-6380(87)90109-9
  2. Beale, S. I. (1978) $\delta$-aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann. Rev. Plant Physiol. 29, 95-120 https://doi.org/10.1146/annurev.pp.29.060178.000523
  3. Wettstein, D. von, Gough, S., and Kannangara, C.G. (1995) Chlorophyll biosynthesis. Plant Cell 7, 1039-1057 https://doi.org/10.1105/tpc.7.7.1039
  4. Beale, S. I. and Weinstein, J. D. (1990) Tetrapyrrole metabolism in photosynthetic organisms. In Biosynthesis of Heme and Chlorophylls (Ed.), Dailey, H.A. pp. 287-391. McGraw-Hill, New York
  5. Avissar, Y. J., Ormerod, J. G., and Beale, S. I. (1989) Distribution of 5-aminolevulinic acid acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151, 513-519 https://doi.org/10.1007/BF00454867
  6. Weinstein, J. D. and Beale, S. I. (1983) Separate physiological roles and sub-cellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258, 6799-6807
  7. Sasaki, K., Tanaka, T., Nishizawa, Y., and Hayashi, M. (1990) Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32, 727-731 https://doi.org/10.1007/BF00164749
  8. Mylona, P., Pawlowski, K., and Bisseling, T. (1995) Symbiotic nitrogen fixation. Plant Cell 7, 869-885 https://doi.org/10.1105/tpc.7.7.869
  9. Jordan, P. M. (1991) The biosynthesis of $\delta$-aminolevulinic acid and its transformation into uroporphyrinogen III. In P.M. Jordan (ed.), The biosynthesis of Tetrapyrrole Pigments. Elsevier, Amsterdam. pp. 1-66
  10. McClung, C. R., Somerville, J. E., Guerinot, M. L., and Chelm, B. K. (1987) Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54, 133-139 https://doi.org/10.1016/0378-1119(87)90355-6
  11. Sasikala, C. H. and Ramana, C. H. (1995) Biotechnological potentials of anoxygenic phototrophic bateria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. Adv. Appl. Microbial. 41, 227-278 https://doi.org/10.1016/S0065-2164(08)70311-3
  12. Lascelles, J. (1978) Regulation of pyrrole synthesis. In R.K. Clayton and W.R. Sistrom (Eds.). The Photosynthetic Bacteria. Plenum Press, NY. pp. 795- 808
  13. Ellen, L. and Kaplan, S. (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two $\delta$-aminolevulinic acid synthetase isozymes. J. Bacteriol. 175, 2292-2303 https://doi.org/10.1128/jb.175.8.2292-2303.1993
  14. Papenbrock, J. and Grimm, B. (2001) Regulatory network of tetrapyrrole biosynthesis-studies of intracellular signaling involvedin metabolicand developmental control of plastids. Planta 213, 667- 681 https://doi.org/10.1007/s004250100593
  15. Menon, I. A., Persad, S. D., and Haberman, H. F. (1989) A comparison of the phytotoxicity of protoporphyrin, coproporphyrin, and uroporphyrin using a cellular system in vitro. Clin. Biochem. 22, 197 -200 https://doi.org/10.1016/S0009-9120(89)80077-3
  16. Boger, P. and Wakabayashi, K. (1999) Peroxidizing herbicides. Springer, Berlin, Heidelberg
  17. Mock, H. P., Keetman, U., and Grimm, B. (2002) Photosensitising tetrapyrroles induce antioxidative and pathogen defense responses in plants, in: D. Inze, M. van Montagu (Eds.). Oxidative Stress in Plants. Taylor and Francis, London, NY. pp.155-170
  18. Hopf, F. R. and Whitten, D. G. (1978) Chemical transformations involving photoexcited porphyrins and metalloporphyrins. In D. dolphin (Ed.), The Porphyrins. Vol. 2. Academic Press. NY. 1978. pp. 191-195
  19. Tripathy, B. C. and Chakraborty, N. (1991) 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96, 761-767 https://doi.org/10.1104/pp.96.3.761
  20. Rebeiz, C. A., Montazer-Zouhoor, A., Jopen, H. J., and Wu, S. M. (1984) Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6, 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  21. Rebeiz, C. A., Motazer-Zouhoor, A., Mayasich, J. M., Tripathy, B. C., Wu, S. M., and Rebeiz, C. C. (1988) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6, 385-486 https://doi.org/10.1080/07352688809382256
  22. Rebeiz, C. A., Reddy, K. N., and Nandilhalli, U. B. (1990) Tetrapyrrole-dependent photodynamic herbicide. Photochem. Photobiol. 52, 1099-1117 https://doi.org/10.1111/j.1751-1097.1990.tb08451.x
  23. Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P., and Matsumoto, H. (1991) Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39, 465-473
  24. Choi, C., Hong, B. S., Sung, H. C., Lee, H. S., and Kim, J. H. (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters. 21, 551-554 https://doi.org/10.1023/A:1005520007230
  25. SAS (Statistical analysis system). (2000) SAS/STAT user's guide. Version 7. Cary, NC: Statistical Analysis Systems Institute. Electronic Version
  26. Kuk, Y. I., Lim, G. S., Chon, S. U., Hwang, T. E., and Guh, J. O. (2003) Effect of 5-aminolevulinic acid on growth and inhibition of various plant species. Kor. J. Crop Sci. 48, 127-133
  27. Chon, S. U., Jung, S., Boo, H. O., and Han, S. K. (2006) Natural Photodynamic activity of 5-aminolevulinic acid produced by an E. coli overexpressing ALA synthase from Bradyrhizobium japonicum. Korean J. Crop Sci. 51, (accepted)
  28. Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., and Konnai, M. (1997) Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22, 109-114 https://doi.org/10.1023/A:1005883930727
  29. Roy, C. B., M. Vivekanandan M. (1998) Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiata. Biologia Planta 41, 211-215 https://doi.org/10.1023/A:1001806429035
  30. Rebeiz, C. A., Wu, S. M., Kuhadje, M., Daniell, H., and Perkins, E. J. (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58, 97-125
  31. Askira, Y., Rubin, B., and Rabinowitch, H. D. (1991) Differential response to the herbicidal activity of $\delta$-aminolevulinic acid in plants with high and low SOD activity. Free Rad. Res. Comms. 12-13, 837-843
  32. Motazer-Zouhoor, A. (1988) Photodynamic herbicide modulators. Ph. D. thesis, pp. 348-394. University of Illinois, Urbana, IL,USA