Browse > Article
http://dx.doi.org/10.5713/ab.21.0021

5-Aminolevulinic acid improves chicken sperm motility  

Taniguchi, Shin (Graduate School of Biosphere Science, Hiroshima University)
Zhu, Zhendong (Graduate School of Biosphere Science, Hiroshima University)
Matsuzaki, Mei (Graduate School of Integrated Sciences for Life, Hiroshima University)
Tsudzuki, Masaoki (Graduate School of Integrated Sciences for Life, Hiroshima University)
Maeda, Teruo (Graduate School of Integrated Sciences for Life, Hiroshima University)
Publication Information
Animal Bioscience / v.34, no.12, 2021 , pp. 1912-1920 More about this Journal
Abstract
Objective: This study investigated the effects of 5-aminolevulinic acid (5-ALA) on the motility parameters, mitochondrial membrane depolarization, and ATP levels in chicken sperm. Methods: The pooled semen from Barred Plymouth Rock males was used. In the first experiment, the semen was diluted 4-times with phosphate-buffered saline (PBS (-)) containing various concentrations (0, 0.01, 0.05, and 0.1 mM) of 5-ALA, and then the sperm motility parameters after incubation were evaluated by computer-assisted sperm analysis (CASA). In the second experiment, the semen was diluted 4-times with PBS (-) containing 0.05 mM 5-ALA, and then sperm mitochondrial membrane depolarization and ATP levels after 1.5 h of incubation were analyzed with the MitoPT® JC-1 Assay and ATP Assay kits, respectively. In the third experiment, the semen was removed from the seminal plasma and resuspended with the mediums of PBS (-), PBS (-) supplemented with CaCl2 and MgCl2 (PBS (+)) + 5-ALA, PBS (+) + caffeine, and PBS (+) + caffeine + 5-ALA. Then, the sperm motility parameters after incubation were evaluated by CASA. In the last experiment, the semen was treated with the mediums of PBS (-), PBS (-) + 5-ALA, 5.7% glucose, 5.7% glucose + 5-ALA after removing the seminal plasma, and then the sperm motility parameters were evaluated by CASA. Results: The addition of 0.05 mM 5-ALA significantly increased the chicken sperm motility, progressive motility, linearity, average path velocity, curvilinear velocity, straight-line velocity, and the wobble. The sperm mitochondrial membrane depolarization was also increased by the 5-ALA treatment. The 5-ALA treatment decreased the sperm ATP levels. Both the caffeine treatment and glucose treatment decreased the sperm motility during incubation period. Conclusion: 5-ALA might increase sperm mitochondrial membrane depolarization to utilize the ATP for enhancing sperm movement.
Keywords
5-Aminolevulinic Acid; Chicken; Sperm Motility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu Z, Fan X, Lv Y, Lin Y, Wu D, Zeng W. Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation. Reprod Fertil Dev 2017;29:2183-94. https://doi.org/10.1071/RD17020   DOI
2 Morton AK, Kushner PJ, Straka GJ, Burnham FB. Biosynthesis of 5-aminolevulinic acid and heme from 4,5-dioxovalerate in the rat. J Clin Inve 1983;71:1744-9. https://doi.org/10.1172/JCI110929   DOI
3 Korkmaz A. Effects of exogenous application of 5-aminolevulinic acid in crop plants. In: Ahmad P, Prasad MNV, editors. Abiotic stress responses in plants. New York, NY, USA: Springer; 2012. https://doi.org/10.1007/978-1-4614-0634-1_12
4 Liu L, Nguyen NT, Ueda A, Saneoka H. Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regul 2014;74:219-28. https://doi.org/10.1007/s10725-014-9913-0   DOI
5 Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 2017;33:200. https://doi.org/10.1007/s11274-017-2366-7   DOI
6 Marbacher S, Klinger E, Schwyzer L, et al. Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. J Neurosurg 2014;36:E10. https://doi.org/10.3171/2013.12.FOCUS13464   DOI
7 Hara M, Takahashi I, Yamori M, Tanaka T, Funada S, Watanabe K. Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot. Plant Growth Regul 2011;64:287-91. https://doi.org/10.1007/s10725-010-9542-1   DOI
8 Wishart GJ, Ashizawa K. Regulation of the motility of fowl spermatozoa by calcium and cAMP. J Reprod Fertil 1987;80:607-11. https://doi.org/10.1530/jrf.0.0800607   DOI
9 Sugiyama Y, Hiraiwa Y, Hagiya Y, Nakajima M, Tanaka T, Ogura S. 5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunol 2018;19:41. https://doi.org/10.1186/s12865-018-0277-5   DOI
10 Lee WJ, Sim HB, Jang YH, Lee S-J, Kim DW, Yim S-H. Efficacy of a complex of 5-aminolevulinic acid and glycylhistidyl-lysine peptide on hair growth. Ann Dermatol 2016;28:438-43. https://doi.org/10.5021/ad.2016.28.4.438   DOI
11 Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 2014; 5:61. https://doi.org/10.3389/fphar.2014.00061   DOI
12 Morokuma Y, Yamazaki M, Maeda T, et al. Hair growth stimulatory effect by a combination of 5-aminolevulinic acid and iron ion. Int J Dermatol 2008;47:1298-303. https://doi.org/10.1111/j.1365-4632.2008.03783.x   DOI
13 Sato K, Matsushita K, Takahashi K, et al. Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory responses in broiler chickens. Poult Sci 2012;91:1582-9. https://doi.org/10.3382/ps.2010-01201   DOI
14 Schatlo B, Fandino J, Smoll NR, et al. Outcomes after combined use of intraoperative MRI and 5-aminolevulinic acid in high-grade glioma surgery. Neuro-Oncology 2015;17:1560-7. https://doi.org/10.1093/neuonc/nov049   DOI
15 Klimowicz-Bodys MD, Batkowski F, Ochrem AS, Savic MA. Comparison of assessment of pigeon sperm viability by contrast-phase microscope (eosin-nigrosin staining) and flow cytometry (SYBR-14/propidium iodide (PI) staining). Theriogenology 2012;77:628-35. https://doi.org/10.1016/j.theriogenology.2011.09.001   DOI
16 Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 1997;22:109-14. https://doi.org/10.1023/A:1005883930727   DOI
17 Burrows WH, Quinn JP. The collection of spermatozoa from the domestic fowl and turkey. Poult Sci 1937;16:19-24. https://doi.org/10.3382/ps.0160019   DOI
18 Maeda T, Terada T, Tsutsumi Y. The efficacy of glucose and electrolyte solutions in preserving the structure of fowl spermatozoa after freezing and thawing. Jpn Poult Sci 1985;22:201-8. https://doi.org/10.2141/jpsa.22.201   DOI
19 Matsuzaki M, Mizushima S, Ichikawa Y, Shiba K, Inaba K, Sasanami T. Effects of a protein kinase inhibitor on sperm motility in the Japanese quail. J Poult Sci 2017;54:73-9. https://doi.org/10.2141/jpsa.0160079   DOI
20 Hotta Y, Tanaka T, Bingshan L, Takeuchi Y, Konnai M. Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J Pestic Sci 1998;23:29-33. https://doi.org/10.1584/jpestics.23.29   DOI
21 Wachowska M, Muchowicz A, Firczuk M, et al. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 2011;16:4140-64. https://doi.org/10.3390/molecules16054140   DOI
22 Ota U, Hara T, Nakagawa H, et al. 5-Aminolevulinic acid combined with ferrous ion reduces adiposity and improves glucose tolerance in diet-induced obese mice via enhancing mitochondrial function. BMC Pharmacol Toxicol 2017;18:7. https://doi.org/10.1186/s40360-016-0108-3   DOI
23 Shimura M, Nozawa N, Ogawa-Tominaga M, et al. Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Sci Rep 2019;9:10549. https://doi.org/10.1038/s41598-019-46772-x   DOI
24 Mingone JC, Gupte AS, Chow LJ, Ahmad M, Abraham GN, Wolin SM. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Am J Physiol-Lung Cell Mol Physiol 2006;291:337-44. https://doi.org/10.1152/ajplung.00482.2005   DOI
25 Zhu Z, Umehara T, Okazaki T, et al. Gene expression and protein synthesis in mitochondria enhance the duration of high-speed linear motility in boar sperm. Front Physiol 2019; 10:252. https://doi.org/10.3389/fphys.2019.00252   DOI
26 Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul 2000;32:97-101. https://doi.org/10.1023/A:1006369404273   DOI
27 Nishio Y, Fujino M, Zhao M, et al. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. Int Immunopharmacol 2014;19:300-7. https://doi.org/10.1016/j.intimp.2014.02.003   DOI
28 Zhu Z, Kawai T, Umehara T, Hoque SAM, Zeng W, Shimada M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radical Biol Med 2019;141:159-71. https://doi.org/10.1016/j.freeradbiomed.2019.06.018   DOI
29 Toit DD, Bornman MS, Van Der Merwe MP, Du Plessis DJ, Oosthuizen JMC. Differential sperm motility scoring and sperm ATP concentrations. Arch Androl 1993;30:69-71. https://doi.org/10.3109/01485019308988371   DOI
30 Garner DL, Thomas CA, Joerg HW, DeJarnette JM, Marshall CE. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 1997;57:1401-6. https://doi.org/10.1095/biolreprod57.6.1401   DOI
31 Ogura S, Maruyama K, Hagiya Y, et al. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Res Notes 2011;4:66. https://doi.org/10.1186/1756-0500-4-66   DOI
32 Kim HJ, Khalimonchuk O, Smith MP, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta Mol Cell Res 2012;1823:1604-16. https://doi.org/10.1016/j.bbamcr.2012.04.008   DOI
33 Miura M, Ito K, Hayashi M, Nakajima M, Tanaka T, Ogura S. The effect of 5-aminolevulinic acid on cytochrome P450-mediated prodrug activation. PloS One 2015;10:e0131793. https://doi.org/10.1371/journal.pone.0131793   DOI
34 Plessis SS, Agarwal A, Mohanty G, Linde MVD. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl 2015;17:230-5. https://doi.org/10.4103/1008-682X.135123   DOI
35 Shimamura Y, Tamatani D, Kuniyasu S, et al. 5-Aminolevulinic acid enhances ultrasound-mediated antitumor activity via mitochondrial oxidative damage in breast cancer. Anticancer Res 2016;36:3607-12.
36 Ito H, Tamura M, Matsui H, Majima JH, Indo HP, Hyodo I. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells. J Clin Biochem Nutr 2014;54:81-5. https://doi.org/10.3164/jcbn.13-98   DOI