• Title/Summary/Keyword: 5 nm & 7 nm technology

Search Result 666, Processing Time 0.027 seconds

Development of Interconnect Process Technology for 5 nm Technology Nodes (5 nm 급 반도체 배선 공정 기술 개발)

  • Choi, Eunmi;Pyo, Sung Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.25-29
    • /
    • 2016
  • The semiconductor industry has been developed mainly by micronization process due to many advantages of miniaturization of devices. Mass production of semiconductors of 10 nm class has been started recently, and it is expected that the technology generation of 5 nm & 7 nm technology will come. However, excessive linewidth reduction affects physical limits and device reliability. To solve these problems, new process technology development and new concept devices are being studied. In this review, we introduce the next generation technology and introduce the advanced research for the new concept device.

Luminescence characterization of $EU^{3+}$ and $Bi^{3+}$ co-doped in ${Y_2}{SiO_5}$ red emitting phosphor by solid state reaction method (고상 반응법으로 합성한 ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Moon, J.W.;Song, Y.H.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.15-18
    • /
    • 2009
  • To enhance near UV-visible absorption region and to applied phosphor convert-white LEOs (PC-WLEDs), a red phosphor composed of ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ compounds was prepared by the conventional solid-state reaction. The photoluminescence (PL) shown that samples were excited by near UV light 395 nm for measurement of PL spectra. Emission spectra of samples have shown red emissions at 612 nm ($^5D_0{\to}^7F_2$). The enhanced near $UV{\sim}$ visible excitation spectrum with a broad band centered at 258 nm and 282 nm originated in the transitions toward the charge transfer state (CTS) due to the $Eu^{3+}-Bi^{3+}-O^{2-}$ interaction. The other excitation band at $350\;nm{\sim}480\;nm$, corresponding to the transitions $^7F_0{\to}^5L_9$ (364 nm), $^7F_0{\to}^5G_3$ (381 nm), $^7F_0{\to}^5L_6$ (395 nm), $^7F_0{\to}^5D_3$, (415 nm) and $^7F_0{\to}^5D_2$ (466 nm), occurred due to enhanced the f-f transition increasing $Bi^{3+}$ and $Eu^{3+}$ ions. The PL intensity increased with increased as concentration of $Bi^{3+}$ and the emission intensity becomes with a maximum at 0.125 mol.

Effects of the 461-nm LED Light and Combination with Acid Stress Treatment on Staphylococcus aureus and Escherichia coli (461-nm LED조사와 산의 병행처리가 Staphylococcus aureus와 Escherichia coli 생육에 미치는 영향)

  • Kim, Se-Hun;Bang, Woo-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.526-529
    • /
    • 2013
  • This study was conducted to evaluate the disinfection effects of Staphylococcus aureus, and Escherichia coli treated with 461-nm LED and pH 5 at $15^{\circ}C$ for 10 h. S. aureus strains were decreased by about 4 log CFU/mL after 461-nm LED irradiation treatment alone for 10 h. E. coli strains were inactivated by irradiation. However, when microorganisms were subjected to a combined treatment of 461-nm LED and pH 5, both strains were inactivated by irradiation for 7 h. The highest D-value was 5.05 h for S. aureus ATCC 27664 and the lowest D-value was 1.39 h for E.coli O157: H7 ATCC 35150 (p<0.05) with 461-nm LED irradiation. For the combined treatment (461-nm LED and pH 5), the highest D-value was 1.58 h for S. aureus ATCC 19095, whereas the lowest D-value was 0.83 h for S. aureus ATCC 27664 (p<0.05). These data showed that bactericidal effects of a combination of pH 5 with 461-nm LED irradiation were enhanced compared to 461-nm LED irradiation alone.

A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating (TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeum, Jeong-Hyun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

Bactericidal effect of 461 nm blue light emitting diode on pathogenic bacteria (461nm 청색 LED를 이용한 식중독세균의 살균효과)

  • Do, Jung Sun;Bang, Woo Suk
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.419-423
    • /
    • 2013
  • The objective of this study was to characterize the bactericidal effect of 461nm visible-light LED on three common foodborne bacteria: Escherichia coli O157:H7, Staphylococcus aureus and Vibrio parahaemolyticus. Tests were conducted against pathogen strains that were treated with 461nm LED for 10 h at $15^{\circ}C$. The E. coli (ATCC 43894, ATCC 8739 and ATCC 35150) and the S. aureus (ATCC 27664, ATCC 19095 and ATCC 43300) had average reductions of 2.5, 6.6, 1.5, 2.5 and 2.0 log CFU/mL, respectively, after they were exposed for 10 h to 461nm LED light (p<0.05). In contrast, V. parahaemolyticus (ATCC 43969) had 6 log CFU/mL reductions after it was exposed for 4 h to 461nm LED light. The results showed that both the Gram-positive and Gram-negative bacteria were inactivated with 461nm LED light exposure. Also, the Gram-negative bacteria were more sensitive to the LED treatment than the Gram-positive bacteria. These results show the potential use of 461nm LED as a food preservation and application technology.

Bactericidal Effect of Pathogenic Bacteria on Acid Treatment Combined with Red, Green, and Blue LED Light at a Low Temperature Environment (저온에서 산 처리와 적색, 녹색, 청색 LED 조사의 조합에 따른 식중독 세균의 살균 효과)

  • Do, Jung Sun;Chung, Hyun-Jung;Bang, Woo-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1725-1732
    • /
    • 2015
  • The bactericidal effects of 642, 521, and 461 nm LED were investigated on Escherichia coli O157:H7 and Staphylococcus aureus strains in TSB with pH 7.2, 4.0, and 3.5 for 10 h at $15^{\circ}C$. The bactericidal effect of 461 nm blue LED was the most pronounced compared to 642 nm and 521 nm LEDs at pH 3.5. When E. coli was exposed to pH 3.5 with 461 nm LED, populations of E. coli O157:H7 ATCC 43894 and 35150 decreased by 4 and 5 log CFU/mL for 2 h, respectively. Populations of E. coli ATCC 8739 decreased by 5 log CFU/mL for 2 h. Further, S. aureus ATCC 27664, 43300, and 19095 were inactivated by 4, 5 and 5 log CFU/mL for 2 h, respectively, at pH 3.5 with 461 nm LED. In conclusion, combined treatment with 461 nm LED and acidic conditions at low-temperature ($15^{\circ}C$) showed the greatest antimicrobial effects. This study suggests that LEDs may be potentially used as a method to maintain the safety of the food preservation technology.

Optical Properties of Sea Water -Entrance of Tokyo Bay, Japan(1)- (해수의 광학적 성질에 관한 연구 -일본 동경만 입구(1)-)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.105-111
    • /
    • 1985
  • Optical properties of sea water were studied in the entrance of Tokyo Bay, Japan, based on the data obtained from six oceanographic stations in April, 1985. The observation of surface irradiance and underwater irradiance of sea water for eight kind of wavelengths (378, 422, 481, 513, 570, 621, 653, 677 nm) of sun light was conducted using the underwater irradiameter (Isigawa # SR-8). The mean attenuation coefficient of the sea water was appeared to be 0.300 (0.034-0.774) and the attenuation coefficient of the sea water for wavelength appeared such as 0.230 for 378 nm, 0.258 for 422 nm, 0.266 for 481 nm, 0.213 for 513 nm, 0.195 for 570 nm, 0.378 for 621 nm, 0.402 for 653 nm, 0.498 for 677 nm. The transparency was 7.2 m (6-9.5 m) and water color was 9 (6.5-10.5) in the study area and the sun's altitude 52.56$^{\circ}$(31.68-66.76$^{\circ}$). The relationship between attenuation coefficient (K) and transparency (D) was K=2.61/D (1.76/D-4.13/D). The rates of light penetration for eight kind of wavelengths (378, 422, 481, 513, 570, 621, 653, 677 nm) were computed with reference to the surface light intensity respectively. The mean rates of light penetration in proportion to depths were 69.30% (57.33-77.40%) in 1 m layer. 17.66% (6.3-27.90%) in 5 m layer, 4.47% (0.60-9.17%) in 10 m layer, and 0.77% (0.02-1.97%) in 20 m layer. The rates of light penetration at the transparency layer with reference to the surface light intensity was shown as 9.91% (0.51-22.99%).

  • PDF

Property of Optical Spectroscopy on the Lanthanum Tungstate doped Eu3+ Ion (Eu3+ 이온이 첨가된 란타넘텅스텐산화물의 분광학 특성)

  • Seo, Hyojin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • $La_2W_3O_{12}:Eu^{3+}$ phosphors were prepared by solid state reaction method. The crystal structure was characterized by XRD pattern and ICSD card (78180). Luminescence properties of $La_2W_3O_{12}:Eu^{3+}$ are investigated by optical and laser-excitation spectroscopy in which emission and excitation spectra and time-resolved spectra are measured. The 1 mol % $Eu^{3+}$-doped $La_2W_3O_{12}$ phosphor exhibits broad excitation band peaking at 286 nm due to the ligand-to-metal charge transfer transition. The excitation lines due to the $^7F_0{\rightarrow}{^5D_4},{^5D_4},{^5L_6},{^5G_4},{^5D_3},{^5D_2}$ transitions of $Eu^{3+}$ are observed in the wavelength region 350-500 nm. The strong line emission is observed at 618 nm corresponding to the due to the $^5D_0{\rightarrow}^7F_2$ transition. The lifetime of 618 nm emission decreases with increasing temperature as 7 K ($114{\mu}s$), 100 K ($94{\mu}s$), 200 K ($10{\mu}s$) and 300 K ($0.5{\mu}s$).

Analysis of surface emission and oxidation rate of landfill gas by major discharge path of landfill (매립장 주요 배출경로별 매립가스 표면발산량 및 산화율 분석)

  • Seung-Kyu Chun;Jong-Keun Park;Myoung-Gwan Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.425-434
    • /
    • 2023
  • An analysis was conducted on landfill gas generation and surface emission by major routes for three landfill sites of S Landfill in the metropolitan area. LS1, which had a total landfill gas generation ratio of 10.9%, accounted for 49.4% of the total surface emissions. The total surface emission of methane alone was 13.6 Nm3/min in the three landfill sites. Among them, the surface emission of methane at LS1, LS2, and LS3 was 8.4(61.7%), 4.0(29.4%), and 1.2 Nm3/min(8.9%), respectively. By emission path in the upper, slope, and dike, it was 7.3(53.2%), 6.4(46.7%), and 0.02 Nm3/min(0.1%). The dike section of the major surface emission areas showed the largest oxidation rate at 87.5%, followed by the upper at 72.3%, and the slope at 71.8%. Based on methane generation, LS1 had the largest surface emission contribution rate, with 61.7% of the total by S Landfill. By major emission path, the slope section of LS1 accounted for 41.7% of the total, the upper section of LS2 24.4%, and the upper section of LS1 20.0%, which accounted for 86.1% of the total methane surface emission of S Landfill. Therefore, it is concluded that intensive management will be necessary.

Effect of Various LED Light Wavelengths on the Growth of Food-borne Bacteria (다양한 파장의 LED 조사가 주요 식중독 미생물의 생장에 미치는 영향)

  • Lee, Ji-Eun;Xu, Xiaotong;Jeong, So-Mi;Kim, Su-Ryong;Kim, Han-Ho;Kang, Woo-Sin;Ryu, Si-Hyeong;Lee, Ga-Hye;Ahn, Dong-Hyun
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.905-912
    • /
    • 2021
  • In this study, four common food-borne bacteria, namely, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis, were targeted via irradiation with 270 nm UV C-LED, 365 nm UV A-LED, 465~475 and 620~630 nm visible-LED, and 850 and 5,000~7,000 nm infrared-LED light. The effect on the growth of each bacterial species was investigated. In the case of 270 nm UV C-LED, all four strains showed inhibitory effects compared with the control group when irradiated for 10 or 30 min. Furthermore, when irradiated with 365 nm UV A-LED for 1 or 3 hr, B. subtilis showed 100% growth inhibition. When irradiated with 465~475 nm visible-LED for 1 hr, all four strains showed no significant difference from the control group but showed significant growth inhibition when irradiated for 3 hr. S. aureus and B. subtilis treated with 620~630 nm visible-LED; S. typhimurium and S. aureus treated with 850 nm infrared-LED; and E. coli, S. typhimurium, and S. aureus treated with 5,000~7,000 nm infrared-LED were confirmed to significantly proliferate compared with the control group. The results of this experiment show the potential of the use of various LED light sources as a food preservation and application technology by examining their effect on the inhibition and growth of food-borne bacteria and by grasping the characteristics of each wavelength.