• Title/Summary/Keyword: 4D simulation

Search Result 2,581, Processing Time 0.031 seconds

Temperature Analysis of Nozzle in a FDM Type 3D Printer Through Computer Simulation and Experiment

  • Park, Jung Hyun;Lyu, Min-Young;Kwon, Soon Yong;Roh, Hyung Jin;Koo, Myung Sool;Cho, Sung Hwan
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.301-307
    • /
    • 2016
  • Additive manufacturing (AM), so called 3D Printing is a new manufacturing process and is getting attraction from many industries. There are several methods of 3D printing. Among them fused deposition modeling (FDM) type is most widely used by reason of cheap maintenance, easy operation and variety of polymeric materials. Articles manufactured by 3D printing have weak deposition strength compared with conventionally manufactured products. Deposition strength of FDM type 3D printed article is highly dependent of deposition temperature. Subsequently the nozzle temperature in the FDM type 3D printing is very important and it is controlled by heat source in the 3D printer. Nozzle is connected with heat block and barrel, and heat block contains heat source. Nozzle becomes hot through heat conduction from heat source. Nozzle temperature has been predicted for various thermal boundary conditions by computer simulation and compared with experimental measurement. Nozzle temperature highly depends upon thermal conductivities of heat block and nozzle. Simulation results are good agreement with experiment.

Developing of slacks clothing pattern for the elderly men using a 3D virtual garment simulation system (3D 가상착의 시스템을 활용한 노년 남성의 슬랙스 원형 설계 )

  • Jiyoung Lim
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.5
    • /
    • pp.627-639
    • /
    • 2023
  • This study seeks to increase the satisfaction of elderly men when purchasing and wearing ready-to-wear clothes by designing a slacks pattern suitable for their body type, which is determined by analyzing their lower bodies using virtual avatars and 3D virtual simulation system. The study found the following. First, based on virtual visualization of the comparison slacks pattern, the waistline position was consistently the lowest scored question among the evaluation survey items. Interpretation of this dissatisfaction suggests that, because the front waistline falls below the abdomen, the lower body, and especially the abdominal shape, is unpleasantly emphasized. Second, by using a virtual simulation system, the study developed a new slacks pattern that considered the concerns of elderly men. The primary measurement changes were as follows: front waist girth W/4+1.5cm+0.5cm, back waist girth W/4+1.5cm-0.5cm, front hip girth H/4+2.5cm-0.5cm, back hip girth H/4+2.5cm+0.5cm. Third, the new slacks pattern's appearance was evaluated more highly than the comparison pattern, confirming the new pattern's appropriateness for elderly men. This study demonstrates how slacks and other clothing patterns designed in a 3D virtual garment simulator can be used to design more appealing clothing for elderly men, increasing the satisfaction of wearing ready-made clothes at older ages.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

A study on simulation of women's Jacket using 3D CAD system (3D CAD system을 활용한 여성재킷 시뮬레이션에 관한 연구)

  • Kwak, Younsin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.191-196
    • /
    • 2018
  • The purpose of this study is to propose improvements for 3D garment simulation system by comparison with the difference between real garment and 3D garment simulation A, B of women's jacket. The process of the study was to take pictures on the standard sized subject wearing the jacket of basic size, to get a avatar from body sizes of the subject, and to obtain images of 3D garment simulation on the avatar. The appearance evaluation was resulted by the method of a questionnaire survey after presenting the images to 20 members of women's jacket customer. On that appearance evaluation, performed comparative analysis of same degree between the real garment and the Virtual garment A in women's jacket. And performed comparative analysis of same degree between the real garment and the Virtual garment B in women's jacket. It was done t-test for difference in appearance evaluation between real garment/virtual garment A and Real garment/virtual garment B. There were the differences on 4 areas: 1 question on the fabric, 9 questions on the front, 3 questions on the side, and 6 questions on the back.

Development of VR Simulation Functions for Supporting Optimal Design Information in Road Project (도로공사의 최적 설계정보 지원을 위한 VR시뮬레이션 기능 구축)

  • Kang, Leen-Seok;Moon, Hyoun-Seok;Park, Seo-Young;Bae, Cheol-Won;Kim, Min-Ji
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.662-665
    • /
    • 2008
  • This research attempts to develop 4D CAD function to support optimal road design by expanding the existing 4D CAD utilization system, which focused on construction phase, to the design phase. The functions such as earthwork simulation for selecting of road alignment, alternative route simulation and structure type simulation were suggested as functions to support road design. Through those virtual reality (VR) functions, visual confirmation of the condition of route and earthwork Is possible by the developed system, and an optimal alternative route can be selected by carrying out layout simulation of the alternative route. The functions presented in this research provide the decision making tools based virtual model for efficient support to road design.

  • PDF

Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation (S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.

2.5D Mapping Module and 3D Cloth Simulation System (2.5D Mapping 모듈과 3D 의복 시뮬레이션 시스템)

  • Kim Ju-Ri;Kim Young-Un;Joung Suck-Tae;Jung Sung-Tae
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.371-380
    • /
    • 2006
  • This paper utilizing model picture of finished clothes in fashion design field various material (textile fabrics) doing Draping directly can invent new design, and do not produce direction sample or poetic theme width and confirm clothes work to simulation. Also, construct database about model and material image and embodied system that can confirm Mapping result by real time. And propose clothes simulation system to dress to 3D human body model of imagination because using several cloth pieces first by process to do so that can do simulation dressing abstracted poetic theme width to 3D model here. Proposed system creates 3D model who put clothes by physical simulation that do fetters to mass-spring model after read 3D human body model file and 2D foundation pattern file. System of this treatise examines collision between triangle that compose human body model for realistic simulation and triangle that compose clothes and achieved reaction processing. Because number of triangle to compose human body is very much, this collision examination and reaction processing need much times. To solve this problem, treatise that see could create realistic picture by method to diminish collision public prosecutor and reaction processing number, and could dress clothes to imagination human body model within water plant taking advantage of Octree space sharing techniques.

Simulation of Dispersion Compensation Transmission System Using Split-Step Finite Element Method (단계 분할 유한 요소법을 이용한 분산 보상 광 전송 시스템의 시뮬레이션)

  • Hong, Soon-Won;Lee, Ho-Joon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.79-86
    • /
    • 1999
  • A simulation of 10 Gbps optical fiber transmission system using DCf(dispersion compensating fiber) for the dispersion compensation is performed. In order to analyze the NRZ pulse propagation in nonlinear, dispersive and lossy fiber, the split-step finite element method that is combination of finite element method and finite difference method is used. Also, we obtained the optical eye diagram and BER characteristics at the receiver of the system that is contained the optical amplifier and system noises. As a result of simulation, we obtain that the dispersion penalty is about 0.8dB after 50km transmission and the receiver sensitivities at $10^{-9}$ BER are -27.4dBm with EDFA pre-amplifier of 12dB gain and -15.6dBm without EDFA.

  • PDF

Simulation Uleung Island By The Statistical Fractals (프랙탈 기법에 의한 울릉도 형상화 사례 연구)

  • 노용덕
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • In 3D computer graphics, fractal techniques have been applied to terrain models. Even though fractal models have become popular for recreating a wide variety of the shapes found in nature, a specific 3D terrain model such as Uleung Island could not be formulated by statistical fractals easily owing to the random effects. However, by locating the midpoints on the edges and the surface of a specific terrain such as Uleung Island, a similar shape of the terrain model can be simulated. This paper shows the way of simulating 3D Uleung Island terrain model by the statistical fractals wherein the subdivision algorithm is used.

  • PDF

Simulation of Deformable Objects using GLSL 4.3

  • Sung, Nak-Jun;Hong, Min;Lee, Seung-Hyun;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4120-4132
    • /
    • 2017
  • In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.