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Abstract 
 

In this research, we implement a deformable object simulation system using OpenGL's shader 
language, GLSL4.3. Deformable object simulation is implemented by using volumetric 
mass-spring system suitable for real-time simulation among the methods of deformable object 
simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used 
to parallelize the operations of existing deformable object simulation systems. The proposed 
system is implemented using a compute shader for parallel processing and it includes a 
bounding box-based collision detection solution. In general,  the collision detection is one of 
severe computing bottlenecks in simulation of multiple deformable objects. In order to 
validate an efficiency of the system, we performed the experiments using  the 3D volumetric 
objects. We compared the performance of multiple deformable object simulations between 
CPU and GPU  to analyze the effectiveness of parallel processing using GLSL. Moreover, we 
measured the computation time of bounding box-based collision detection to show that 
collision detection can be processed in real-time. The experiments using 3D volumetric 
models with 10K faces showed the GPU-based parallel simulation improves performance by  
98%  over the CPU-based simulation, and the overall steps including collision detection and 
rendering could be processed in real-time frame rate of  218.11 FPS. 
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1. Introduction 

Recently, deformable objects that characterized by changing their shape through interaction 
have been widely used in various fields such as game, animation, and medical simulation. 
Especially, deformable object’s importance is increasing due to development of augmented 
reality and virtual reality. There are two representative methods for simulating the deformable 
objects. The first method is mass-spring system, which is mainly applied to real-time 
simulation. It is difficult to apply the mass-spring system to fields requiring accurate 
deformation such as medical or architectural fields, while it has been widely applied to various 
types of interactive games. The second method is the finite element method which is used 
mainly in the fields to require precise deformation even though it takes a long time because the 
expression of the deformation is accurate. In this research, we plan to simulate deformable 
objects using volumetric mass-spring system which can be applied to various applications 
based on fast performance [1-4]. However, even though the mass-spring system is simple so 
that it is suitable for real time simulation, it also can require lots of computation time as the 
complexity of 3D objects increases. Therefore, it is difficult to simulate the deformation of a 
large model in real time using the traditional CPU single core method. To solve this problem, 
we need a way to speed up the computation by parallel processing using the GPU. 

GPU (Graphic Processing Unit) is a processor that focuses on fast operation through 
aggregation of ALU (Arithmetic Logic Units) unlike CPU. In the past, the GPU was used only 
for rendering graphic objects on the screen and user defined programs could not be executed 
on GPU. However, since the introduction of advanced GPUs such as NVIDIA's GeForce, it 
has been allowed to execute user-defined geometric operations on GPU. A CPU has a 
structure in which a small number of ALUs handle a large amount of operations. Instead, a 
large number of ALUs on GPU can deal with a large amount of computation, which is much 
faster than the computation through the CPU. In recent, various GPGPU (General-purpose 
computing on Graphic Process Unit) techniques have been introduced, which enable the 
computation of general-purpose operations to be speed up using GPU in various fields such as 
computer vision [5-7]. A user-defined program including graphical operations or 
general-purpose operations running on the GPU is called a shader. Several shader languages 
such as Cg, CUDA and OpenCL, have been released. Most of them can be available on 
specific GPU.  To allow shaders to be executed on various kind of GPUs, GLSL (OpenGL 
Shader Language) 4.3 was released in 2012.  

In this paper, we implement shaders for parallel simulation of volumetric deformable 
objects using GLSL 4.3. In order to perform parallel simulation on GPU, it is important to 
define data structures suitable for parallel processing. First of all, we construct the deformable 
objects of regular tetrahedral structures by applying the delauney triangle algorithm inside the 
existing surface 3D model. Then, the physics rules based on the mass-spring system are 
applied to the 3D model composed of the divided tetrahedrons for representing natural 
deformation of objects. For the processing based on the GPU, we need an algorithm that 
optimized for parallel processing. We also need an algorithm that merges computation results 
after parallel computation is completed. In this paper, we implement a computational dividing 
algorithm and a computational result merging algorithm for simulation of multiple deformable 
objects using compute shader, which is one kind of shaders to be provided in GLSL 4.3.  

In Chapter 2 of this paper, research trends on GPU parallel processing and physics based 
deformation object simulation are investigated and in Chapter 3, the proposed algorithm and 
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data structures for parallel processing are described. Section 4 contains the implementation 
results and experimental results. Finally, section 5 describes the conclusions and future works 
related to them. 

2. Related Work 

2.1. GPU-based Parallel Processing using GLSL4.3 
OpenGL is a cross-platform Open Graphic Library that includes rendering-related 
functionality. DirectX is available only  in Windows environments. However OpenGL can run 
on a variety of operating systems, such as Linux, MaxOS, and Android. The OpenGL Shading 
Language (GLSL) is a high-level language that allows access to the GPU pipeline. GLSL is 
influenced by the versatility of OpenGL so that it can work on various kind of graphics cards. 
Basically, GLSL supports vertex shader, geometry shader, and fragment shaderw related to 
graphic rendering. In 2012, a new shader called compute shader has been added to OpenGL 
4.3 [8]. 

 

 
Fig. 1. OpenGL 4.3 Pipeline 

 
The compute shader runs on a separate pipeline as shown in Fig. 1 and it is used to 

calculate arbitrary information that is not related to the graphics rendering. The compute 
shader can allocate workloads to several work groups in order to perform parallel processing 
on the GPU [9-10]. One work group includes a number of invocations of a compute shader. 
The user-defined compute space is defined by the number of work groups and the number of 
invocations within a workgroup. The work group space can be divided into three dimensions: 
X, Y, Z. The numbers of work groups in X and Y directions  can be 1,024 at most, respectively, 
and the number of work groups in Z direction can be 64 at most. The whole three-dimensional 
work group space which includes all shader invocations is called the global compute space, 
and the space that includes the invocations within a particular work group is called the local 
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work group space. The global work group is invoked into the compute shader using the 
glDispatchCompute() method, and the global work group that is dispatched is divided into 
local work groups. Since the invocations of the compute shader operate in a non-sequential 
manner and in parallel, it is important to properly divide the workload to the invocations of the 
compute shader in a sequence-independent structure. Fig. 2 shows the an one-dimensional 
global compute  space and the local work group space within a particular work group. 

 

 
Fig. 2. One-dimensional global compute space and local work group space. 

 

GLSL provides a shader sorage buffer object (SSBO) that is a data buffer accessible by 
CPUs and shaders. Uniform buffer objects (UBOs) used in existing shaders can store data up 
to 16KB, while SSBO can store data up to 128MB. In addition, there is no restriction on the 
data format that can be stored, and thus various operations can be performed. SSBO can be 
bound to a compute shader, making it easy to input and output dat needed for the task. In this 
paper, the data related to the mass-spring system and simulation of deformabled objects are 
stored in these SSBO. Based on the data stored in the SSBO, compute shaders for mass-spring 
system  are invoked in parallel. 

 

 2.2. Mass-Spring System 
The mass-spring system has a structure in which nodes with mass are connected to virtual 
massless springs. The representative types of springs are classified into shear, flex (bend) and 
structural springs depending on the connected structure. The mass-spring model is a structure 
in which the force applied to a node is propagated to other node through the springs connected 
to the node. Fig. 3 shows the different types of springs to be used in mass-spring system. 

 
Fig. 3. Three types of springs. 
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The spring force transmitted to the two nodes constituting the spring  is defined by spring 
coefficient (Ks), restoration coefficient (Kd), spring initial length (L0), and positions of two 
connected nodes (Node1, Node2). The calculated force values are used to obtain the next 
positions of two nodes through numerical integration. Numerical integration is a method of 
deriving a state value after a certain time interval by using an integration. There are several 
numerical integration methods such as such as Euler Integration, Midpoint Integration, and 4th 
Order Runge-Kutta Integration. Each scheme uses a unique approach in the iteration of time 
intervals, so the number of operations varies. Numerical integration methods accumulate 
numerical errors by proceed of time interval.  Even though Euler method can accumulate 
numerical errors quickly, it has the least computational burden so that many applications 
requiring real-time processing have used it with small time interval. 
 

2.3. Tetrahedron Volume Structure 
Tetrahedron volume structure is a structure in which a volumetric object is divided into regular 
tetrahedron by adding vertices inside the existing surface mesh model. In the surface mesh 
model, the springs to support the inside does not exist so that the model can easily collapse 
when external forces are given. However, the tetrahedron mesh model  has the advantage that 
it can preserve the shape of the model without the collapse since there are vertices and springs 
inside the model. Tetgen is a library for generating tetrahedron structural models and it can be 
used with 3d Max and Maya [11-12]. Standard file formats of surface mesh model such as obj 
and stl are used as inputs of Tetgen and it generates a tetrahedron model of the desired 
resolution as an output. In order to convert a surface mesh model into a tetrahedron model, 
Tetgen adds vertices inside the surface model by applying the delaunay triangulation 
algorithm based on the information of surface vertices. Based on the vertices generated finally, 
three kind of data, that is, vertex information, surface information, and the tetrahedron 
structure, are constructed for a volumetric object. Fig. 4 shows examples of the tetrahedron 
mesh models converted from the existing surface mesh models by Tetgen.  
 

 
Fig. 4. Conversion from a surface mesh model to a tetrahedron model using Tetgen 

 

2.4. Collision Detection 
Collision detection is a major part of the physics-based simulation demaning high 
computational cost. A collision detection algorithm detects the collision of object and world, 
and the collision of object and object. Collision detection is classified into discrete method and 
continuous method. Discrete method is a method checking collision in every frame and 
continuous method checks collisoins between continuous frames. Continous method requires 
the more computation cost than discrete method because it checks collision based on object 
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continuity. In order to detect collision effectively, the discrete collision detection methods 
have widely used by returning the positions of collided vertices to the previsous posistions and 
by giving collision responses, when the collisions are detected at one frame [13-14]. 
 

 

Fig. 5. Discrete collision detection and continuous collision detection 

 

The collision detection method is largely classified into a method of detecting all nodes of 
an object and a boundary deteciton method of an object represented by a bounding volume. 
The method to check the collisions for every nodes in an object has increases the calculation 
overhead as the object becomes complicated and larger. In general, the boundary collision 
detection method has used as a culling step for choosing the colliding candidates  before the 
accurate collision detection. The boundary is designated as a boundary larger than the object. 
The algorithm first checks collisions between objects by using boundary-based collision 
detection method. When a collision between boundaries is detected, a precise collision 
between the objects is detected using node-based collision detection method. 

3. Design of Deformable Objects Simulation System 

3.1. Compute Shader and SSBO Setup 
The structure of the Compute Shader and the SSBO to construct the multi deformable object 
simulation system of this research is as follows. The Compute Shader is divided into two 
levels, that is Collision and Physics. The Collision Compute Shader level includes a Compute 
Shader that performs object boundary collision checking, surface collision checking, and 
subsequent collision response computation. Physics Compute Shader level includes 
Mass-Spring System, Light and Compute Shader that performs normal vector operations of 
objects. The structure of the Compute Shader specified in this research is shown in the 
following figure. 

Discrete collision detection 

continuous collision detection 
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Fig. 6. Compute Shaders for our volumetric mass-spring system 

 

The SSBO required for each Compute Shader and each component are shown in the 
following figure. 
  

 
Fig. 7. SSBO structure map of system 

 

There are seven SSBOs related to the object model: Node Position, Node Velocity, Node 
Force, Spring Information, Face Information, Face Collision Result, and Face Normal. Node 
Position stores the position information (x, y, z) of each node. Node Velocity and Node Force 
store velocity and force information (x, y, z) of each node. Spring Information SSBO stores the 
two node numbers that make up the spring and the initial length of the spring. These four 
SSBOs bind to the Physics Compute Shader Level, which performs physically based 
simulations. Face Informxation SSBO stores three surface nodes and is used for Face-Face 
Intersection and object rendering. Face Collision SSBO is a buffer that stores the results of 
Face-Face Intersection and is used for collision response. Face Normal SSBO is used to store 
Normal Vector for realistic object rendering. The bounding box SSBO for checking the 
primary collision stores information about the object number, six coordinate information 
forming the box, and the number of vertices and surfaces of the object. 
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3.2. Multiple Object’s Data Mapping using SSBO 
SSBO is generated by the order of Gen Buffer, Bind Buffer, Buffer Data Writing, and Bind 
Buffer Target. SSBO specifies the memory area in the Buffer Data Writing stage for effective 
memory allocation. After specifying the memory size of the whole SSBO, the data can be 
written by accessing the memory area directly through the rewriting process. In this research, 
we allocate the total memory size to bind Multi object to one SSBO, and then divide and write 
the memory area according to the size of each object. 
 

 
Fig. 8. SSBO memory allocation for multiple objects 

 

3.3. GPU based mass-spring system design 
The mass-spring system in the CPU calculates the force acting on the spring through the loop 
and then calculates the motion of the node. The following figure is a simple mass-spring 
system operation flowchart in CPU. 

 
Fig. 9.  Flow chart for CPU-based mass-spring system 

 
The mass-spring system in the CPU uses 3 loops that computes the spring force for physics 

operations, a loop that adds up the node force, and a loop that updates the velocity and position 
by applying the force to the node. These three iterations are computationally fast if the object 
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is simple and a single object. However, the complexity of the object, the slower the 
computation speed, the more realistic simulation can not be performed. However, GPU-based 
parallel processing allows the mass-spring system to perform operations on all objects 
simultaneously, which improves the simulation speed. Therefore, we construct a mass-spring 
system based on GPU-based parallel processing. The following figure shows a simple 
mass-spring system operation flowchart on the GPU. 
 

 
Fig. 10. Flow chart for GPU-based mass-spring system. 

 

4. Implementation of Deformable Simulation System 

4.1. Experimental Tetrahedron Mesh Models 
In this research, deformable object simulation is performed by combining tetrahedron mesh 
model and Mass-Spring System. The modified object simulation system of this research 
consists of two phases, each using alphabet and old model. The model information used in the 
system is Node Position, Spring Information, and Face Information. The following table 
shows the information of each Tetrahedron model.  
 

Table 1. Information of tetrahedron mesh models 

Tetra Model 

Name 

Number of 

Node 

Number of 

Spring 

Number of 

Face 

Sphere 1 4K 23K 8K 

Sphere 2 1K 11.3K 2K 

 

The Table 1 mean sphere models used in Phase 1 and 2. The phase 1 use three sphere1 
models and phase 2 use sphere 1 and sphere2 models.  
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4.2. GPU-Based Mass-Spring System 
In this research, we implemented the existing deformable object simulation system based on 
GPU using Compute Shader of GLSL 4.3. And it simulates multiple objects differently from 
existing simulation system. The simulation has two phases, simulating the alphabet freefall 
simulation and the crash simuluation of the sphere and sphere. The implementation hardware 
and software environment of the system are shown in the following table. 
 

Table 2. Implementation and experimental environments 
 

Name Specifications 

CPU Intel i7-3770K 3.5GHz 
GPU Nvidia GeForce GTX 760Ti 
RAM 32GB 
OS Windows 10 pro 64bit 
IDE Visual Studio 2013 Ultimate 

Library OpenGL 4.3, Tetgen 

 

The most important element of this modified object simulation system, GPU, was Nvidia 
GeForce GTX 760Ti. The GPU has a 915MHz Graphics Clock and a 980MHz Processor 
Clock. Both phases of the simulation system were run in the above implementation 
environment, and the experiment was performed in the same environment.  

The following figure shows the multi deformable object simulation system implemented in 
this research. 

 
 

 

 

 

 
Fig. 11. Free fall simulation of multiple sphere models 

 

 
 

Fig. 12. Collision simulation of multiple sphere models 
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The alphabet simulation is a free fall of five alphabets and checks for collisions with other 
alphabets and floors. The sphere simulation moves to the same place and checks for collisions 
in a gravity-free situation. In this research, the system is implemented to simulate up to 5,000 
frames. The maximum 5,000 frames we set in the system is the minimum frame condition in 
which objects fall and collide sufficiently.  

 

4.3. Performance measurement experiment of simulation system 
In this research, we compare the average frame per sec (FPS) to compare the simulation 
performance with the GPU in the CPU and the performance comparison with the bounding 
box. Simulation on CPU and GPU was performed by Face-Face Intersection after first 
collision check through the bounding box. The model used in the experiment was the same in 
CPU and GPU, and the average FPS was calculated 10 times in the same environments. The 
following table compares the average FPS on CPU and GPU.  
 

Table 3. Experimental 1 : Performance comparison between CPU and GPU 

Simulation 
FPS Average 

In CPU 

FPS Average 

In GPU 

Performance 

Improvements 

FreeFall 
Multiple sphere models 

1.34 FPS 131.66 FPS 98.9% 

Collision 
Multiple sphere models 

4.2 FPS 218.11 FPS 98.0% 

 

Experimental results show about 98 times performance improvement compared to CPU 
multi deformable object simulation. Although the CPU showed about 1.34, 4.2 FPS, the 
parallel simulation system with GPU shows 131.66, 218.11 FPS which exceeded 30 FPS, 
which is the minimum condition that does not give a sense of discomfort to the user. 

Experiment 1 performs simulation including Bounding Box and Experiment 2 performs 
simulation that does not include Bounding Box in order to perform performance comparison 
according to presence or absence of bounding box in GPU. The experiment was performed 10 
times in the same environment. Experiments are performed only until a collision occurs to 
compare the computation speeds associated with the collision tests before the collision.  
 
Table 4. Experimental 2 : Performance comparison between without bounding box and with bounding 

box  

Simulation 
Without Bounding 

Box 

With Bounding 

Box 

Performance 

Improvements 

Free fall 
multiple sphere models 

39.11 FPS 249.45 FPS 84.3% 

Collision 
multiple sphere models 

71.38 FPS 343.82 FPS 79.2% 
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Experimental results show a performance improvement of more than about 80% over the 
case of continuous Face-Face Intersection without collision. By eliminating unnecessary 
collision check operations, the overall operation speed of the simulation system can be 
improved.  
 

5. Conclusions 
 

In this research we implemented multi deformable object simulation using OpenGL shader 
language, GLSL 4.3. We performed deformable object simulation that which requires many 
operations in parallel using GLSL 's Compute Shader. Our research showed a 98% to 99% 
performance improvement over the CPU-based simulation system using GPU parallel 
simulation system. We also used the bounding box method to efficiently perform collision 
detecting which takes up a large computational cost of the physics simulation system. It 
showed about 80% performance improvement compared to face-face intersection method 
which checks all faces of object. However, the one-level bounding box method that surrounds 
the outer surface of the object used in this study has a disadvantage in that it can not know the 
exact collision position of the object. This again increases the cost of the operation by using 
face-face intersection which checks all faces. In future works, it is expected that using 
hierarchical bounding box method will be able to find the exact collision position and optimize 
the operation for collision inspection more. It is expected that faster collision detection can be 
performed by applying the occlusion check algorithm using depth buffer. 
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