
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, Aug. 2017 4120
Copyright ⓒ2017 KSII

Simulation of Deformable Objects
using GLSL 4.3

Nak-Jun Sung1, Min Hong2, Seung-Hyun Lee3 and Yoo-Joo Choi4

1 Dept of Computer Science, Soonchunhyang University
Asan, 31538 - Republic of Korea

[e-mail: njsung@sch.ac.kr]
2 Dept of Computer Software Engineering, Soonchunhyang University

Asan, 31538 - Republic of Korea
[e-mail: mhong@sch.ac.kr]

3 School of Architectural Engineering, College of Science & Technology, Hongik University
Sejong, 30016 - Republic of Korea

[e-mail: slee43@hongik.ac.kr]
4 Department of Newmedia Content, Seoul Media Institute of Technology

Seoul, 03925 - Republic of Korea
[e-mail: yjchoi@smit.ac.kr]

*Corresponding author: Yoo-Joo Choi

Received June 15, 2017; revised July 30, 2017; accepted August 17, 2017;
Published August 31, 2017

Abstract

In this research, we implement a deformable object simulation system using OpenGL's shader
language, GLSL4.3. Deformable object simulation is implemented by using volumetric
mass-spring system suitable for real-time simulation among the methods of deformable object
simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used
to parallelize the operations of existing deformable object simulation systems. The proposed
system is implemented using a compute shader for parallel processing and it includes a
bounding box-based collision detection solution. In general, the collision detection is one of
severe computing bottlenecks in simulation of multiple deformable objects. In order to
validate an efficiency of the system, we performed the experiments using the 3D volumetric
objects. We compared the performance of multiple deformable object simulations between
CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we
measured the computation time of bounding box-based collision detection to show that
collision detection can be processed in real-time. The experiments using 3D volumetric
models with 10K faces showed the GPU-based parallel simulation improves performance by
98% over the CPU-based simulation, and the overall steps including collision detection and
rendering could be processed in real-time frame rate of 218.11 FPS.

Keywords: deformable object simulation, GPGPU, parallel graphic processing, GLSL

A preliminary version of this paper was presented at ICONI 2016, and was selected as an outstanding paper.
This research was supported by Basic Science Research Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education(NRF-2015R1D1A1A01059304) and was supported by the
Soonchunhyang University Research Fund.

https://doi.org/10.3837/tiis.2017.08.021 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4121

1. Introduction

Recently, deformable objects that characterized by changing their shape through interaction
have been widely used in various fields such as game, animation, and medical simulation.
Especially, deformable object’s importance is increasing due to development of augmented
reality and virtual reality. There are two representative methods for simulating the deformable
objects. The first method is mass-spring system, which is mainly applied to real-time
simulation. It is difficult to apply the mass-spring system to fields requiring accurate
deformation such as medical or architectural fields, while it has been widely applied to various
types of interactive games. The second method is the finite element method which is used
mainly in the fields to require precise deformation even though it takes a long time because the
expression of the deformation is accurate. In this research, we plan to simulate deformable
objects using volumetric mass-spring system which can be applied to various applications
based on fast performance [1-4]. However, even though the mass-spring system is simple so
that it is suitable for real time simulation, it also can require lots of computation time as the
complexity of 3D objects increases. Therefore, it is difficult to simulate the deformation of a
large model in real time using the traditional CPU single core method. To solve this problem,
we need a way to speed up the computation by parallel processing using the GPU.

GPU (Graphic Processing Unit) is a processor that focuses on fast operation through
aggregation of ALU (Arithmetic Logic Units) unlike CPU. In the past, the GPU was used only
for rendering graphic objects on the screen and user defined programs could not be executed
on GPU. However, since the introduction of advanced GPUs such as NVIDIA's GeForce, it
has been allowed to execute user-defined geometric operations on GPU. A CPU has a
structure in which a small number of ALUs handle a large amount of operations. Instead, a
large number of ALUs on GPU can deal with a large amount of computation, which is much
faster than the computation through the CPU. In recent, various GPGPU (General-purpose
computing on Graphic Process Unit) techniques have been introduced, which enable the
computation of general-purpose operations to be speed up using GPU in various fields such as
computer vision [5-7]. A user-defined program including graphical operations or
general-purpose operations running on the GPU is called a shader. Several shader languages
such as Cg, CUDA and OpenCL, have been released. Most of them can be available on
specific GPU. To allow shaders to be executed on various kind of GPUs, GLSL (OpenGL
Shader Language) 4.3 was released in 2012.

In this paper, we implement shaders for parallel simulation of volumetric deformable
objects using GLSL 4.3. In order to perform parallel simulation on GPU, it is important to
define data structures suitable for parallel processing. First of all, we construct the deformable
objects of regular tetrahedral structures by applying the delauney triangle algorithm inside the
existing surface 3D model. Then, the physics rules based on the mass-spring system are
applied to the 3D model composed of the divided tetrahedrons for representing natural
deformation of objects. For the processing based on the GPU, we need an algorithm that
optimized for parallel processing. We also need an algorithm that merges computation results
after parallel computation is completed. In this paper, we implement a computational dividing
algorithm and a computational result merging algorithm for simulation of multiple deformable
objects using compute shader, which is one kind of shaders to be provided in GLSL 4.3.

In Chapter 2 of this paper, research trends on GPU parallel processing and physics based
deformation object simulation are investigated and in Chapter 3, the proposed algorithm and

4122 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

data structures for parallel processing are described. Section 4 contains the implementation
results and experimental results. Finally, section 5 describes the conclusions and future works
related to them.

2. Related Work

2.1. GPU-based Parallel Processing using GLSL4.3
OpenGL is a cross-platform Open Graphic Library that includes rendering-related
functionality. DirectX is available only in Windows environments. However OpenGL can run
on a variety of operating systems, such as Linux, MaxOS, and Android. The OpenGL Shading
Language (GLSL) is a high-level language that allows access to the GPU pipeline. GLSL is
influenced by the versatility of OpenGL so that it can work on various kind of graphics cards.
Basically, GLSL supports vertex shader, geometry shader, and fragment shaderw related to
graphic rendering. In 2012, a new shader called compute shader has been added to OpenGL
4.3 [8].

Fig. 1. OpenGL 4.3 Pipeline

The compute shader runs on a separate pipeline as shown in Fig. 1 and it is used to

calculate arbitrary information that is not related to the graphics rendering. The compute
shader can allocate workloads to several work groups in order to perform parallel processing
on the GPU [9-10]. One work group includes a number of invocations of a compute shader.
The user-defined compute space is defined by the number of work groups and the number of
invocations within a workgroup. The work group space can be divided into three dimensions:
X, Y, Z. The numbers of work groups in X and Y directions can be 1,024 at most, respectively,
and the number of work groups in Z direction can be 64 at most. The whole three-dimensional
work group space which includes all shader invocations is called the global compute space,
and the space that includes the invocations within a particular work group is called the local

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4123

work group space. The global work group is invoked into the compute shader using the
glDispatchCompute() method, and the global work group that is dispatched is divided into
local work groups. Since the invocations of the compute shader operate in a non-sequential
manner and in parallel, it is important to properly divide the workload to the invocations of the
compute shader in a sequence-independent structure. Fig. 2 shows the an one-dimensional
global compute space and the local work group space within a particular work group.

Fig. 2. One-dimensional global compute space and local work group space.

GLSL provides a shader sorage buffer object (SSBO) that is a data buffer accessible by
CPUs and shaders. Uniform buffer objects (UBOs) used in existing shaders can store data up
to 16KB, while SSBO can store data up to 128MB. In addition, there is no restriction on the
data format that can be stored, and thus various operations can be performed. SSBO can be
bound to a compute shader, making it easy to input and output dat needed for the task. In this
paper, the data related to the mass-spring system and simulation of deformabled objects are
stored in these SSBO. Based on the data stored in the SSBO, compute shaders for mass-spring
system are invoked in parallel.

 2.2. Mass-Spring System
The mass-spring system has a structure in which nodes with mass are connected to virtual
massless springs. The representative types of springs are classified into shear, flex (bend) and
structural springs depending on the connected structure. The mass-spring model is a structure
in which the force applied to a node is propagated to other node through the springs connected
to the node. Fig. 3 shows the different types of springs to be used in mass-spring system.

Fig. 3. Three types of springs.

4124 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

The spring force transmitted to the two nodes constituting the spring is defined by spring
coefficient (Ks), restoration coefficient (Kd), spring initial length (L0), and positions of two
connected nodes (Node1, Node2). The calculated force values are used to obtain the next
positions of two nodes through numerical integration. Numerical integration is a method of
deriving a state value after a certain time interval by using an integration. There are several
numerical integration methods such as such as Euler Integration, Midpoint Integration, and 4th
Order Runge-Kutta Integration. Each scheme uses a unique approach in the iteration of time
intervals, so the number of operations varies. Numerical integration methods accumulate
numerical errors by proceed of time interval. Even though Euler method can accumulate
numerical errors quickly, it has the least computational burden so that many applications
requiring real-time processing have used it with small time interval.

2.3. Tetrahedron Volume Structure
Tetrahedron volume structure is a structure in which a volumetric object is divided into regular
tetrahedron by adding vertices inside the existing surface mesh model. In the surface mesh
model, the springs to support the inside does not exist so that the model can easily collapse
when external forces are given. However, the tetrahedron mesh model has the advantage that
it can preserve the shape of the model without the collapse since there are vertices and springs
inside the model. Tetgen is a library for generating tetrahedron structural models and it can be
used with 3d Max and Maya [11-12]. Standard file formats of surface mesh model such as obj
and stl are used as inputs of Tetgen and it generates a tetrahedron model of the desired
resolution as an output. In order to convert a surface mesh model into a tetrahedron model,
Tetgen adds vertices inside the surface model by applying the delaunay triangulation
algorithm based on the information of surface vertices. Based on the vertices generated finally,
three kind of data, that is, vertex information, surface information, and the tetrahedron
structure, are constructed for a volumetric object. Fig. 4 shows examples of the tetrahedron
mesh models converted from the existing surface mesh models by Tetgen.

Fig. 4. Conversion from a surface mesh model to a tetrahedron model using Tetgen

2.4. Collision Detection
Collision detection is a major part of the physics-based simulation demaning high
computational cost. A collision detection algorithm detects the collision of object and world,
and the collision of object and object. Collision detection is classified into discrete method and
continuous method. Discrete method is a method checking collision in every frame and
continuous method checks collisoins between continuous frames. Continous method requires
the more computation cost than discrete method because it checks collision based on object

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4125

continuity. In order to detect collision effectively, the discrete collision detection methods
have widely used by returning the positions of collided vertices to the previsous posistions and
by giving collision responses, when the collisions are detected at one frame [13-14].

Fig. 5. Discrete collision detection and continuous collision detection

The collision detection method is largely classified into a method of detecting all nodes of
an object and a boundary deteciton method of an object represented by a bounding volume.
The method to check the collisions for every nodes in an object has increases the calculation
overhead as the object becomes complicated and larger. In general, the boundary collision
detection method has used as a culling step for choosing the colliding candidates before the
accurate collision detection. The boundary is designated as a boundary larger than the object.
The algorithm first checks collisions between objects by using boundary-based collision
detection method. When a collision between boundaries is detected, a precise collision
between the objects is detected using node-based collision detection method.

3. Design of Deformable Objects Simulation System

3.1. Compute Shader and SSBO Setup
The structure of the Compute Shader and the SSBO to construct the multi deformable object
simulation system of this research is as follows. The Compute Shader is divided into two
levels, that is Collision and Physics. The Collision Compute Shader level includes a Compute
Shader that performs object boundary collision checking, surface collision checking, and
subsequent collision response computation. Physics Compute Shader level includes
Mass-Spring System, Light and Compute Shader that performs normal vector operations of
objects. The structure of the Compute Shader specified in this research is shown in the
following figure.

Discrete collision detection

continuous collision detection

4126 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

Fig. 6. Compute Shaders for our volumetric mass-spring system

The SSBO required for each Compute Shader and each component are shown in the
following figure.

Fig. 7. SSBO structure map of system

There are seven SSBOs related to the object model: Node Position, Node Velocity, Node
Force, Spring Information, Face Information, Face Collision Result, and Face Normal. Node
Position stores the position information (x, y, z) of each node. Node Velocity and Node Force
store velocity and force information (x, y, z) of each node. Spring Information SSBO stores the
two node numbers that make up the spring and the initial length of the spring. These four
SSBOs bind to the Physics Compute Shader Level, which performs physically based
simulations. Face Informxation SSBO stores three surface nodes and is used for Face-Face
Intersection and object rendering. Face Collision SSBO is a buffer that stores the results of
Face-Face Intersection and is used for collision response. Face Normal SSBO is used to store
Normal Vector for realistic object rendering. The bounding box SSBO for checking the
primary collision stores information about the object number, six coordinate information
forming the box, and the number of vertices and surfaces of the object.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4127

3.2. Multiple Object’s Data Mapping using SSBO
SSBO is generated by the order of Gen Buffer, Bind Buffer, Buffer Data Writing, and Bind
Buffer Target. SSBO specifies the memory area in the Buffer Data Writing stage for effective
memory allocation. After specifying the memory size of the whole SSBO, the data can be
written by accessing the memory area directly through the rewriting process. In this research,
we allocate the total memory size to bind Multi object to one SSBO, and then divide and write
the memory area according to the size of each object.

Fig. 8. SSBO memory allocation for multiple objects

3.3. GPU based mass-spring system design
The mass-spring system in the CPU calculates the force acting on the spring through the loop
and then calculates the motion of the node. The following figure is a simple mass-spring
system operation flowchart in CPU.

Fig. 9. Flow chart for CPU-based mass-spring system

The mass-spring system in the CPU uses 3 loops that computes the spring force for physics

operations, a loop that adds up the node force, and a loop that updates the velocity and position
by applying the force to the node. These three iterations are computationally fast if the object

4128 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

is simple and a single object. However, the complexity of the object, the slower the
computation speed, the more realistic simulation can not be performed. However, GPU-based
parallel processing allows the mass-spring system to perform operations on all objects
simultaneously, which improves the simulation speed. Therefore, we construct a mass-spring
system based on GPU-based parallel processing. The following figure shows a simple
mass-spring system operation flowchart on the GPU.

Fig. 10. Flow chart for GPU-based mass-spring system.

4. Implementation of Deformable Simulation System

4.1. Experimental Tetrahedron Mesh Models
In this research, deformable object simulation is performed by combining tetrahedron mesh
model and Mass-Spring System. The modified object simulation system of this research
consists of two phases, each using alphabet and old model. The model information used in the
system is Node Position, Spring Information, and Face Information. The following table
shows the information of each Tetrahedron model.

Table 1. Information of tetrahedron mesh models

Tetra Model

Name

Number of

Node

Number of

Spring

Number of

Face

Sphere 1 4K 23K 8K

Sphere 2 1K 11.3K 2K

The Table 1 mean sphere models used in Phase 1 and 2. The phase 1 use three sphere1
models and phase 2 use sphere 1 and sphere2 models.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4129

4.2. GPU-Based Mass-Spring System
In this research, we implemented the existing deformable object simulation system based on
GPU using Compute Shader of GLSL 4.3. And it simulates multiple objects differently from
existing simulation system. The simulation has two phases, simulating the alphabet freefall
simulation and the crash simuluation of the sphere and sphere. The implementation hardware
and software environment of the system are shown in the following table.

Table 2. Implementation and experimental environments

Name Specifications

CPU Intel i7-3770K 3.5GHz
GPU Nvidia GeForce GTX 760Ti
RAM 32GB
OS Windows 10 pro 64bit
IDE Visual Studio 2013 Ultimate

Library OpenGL 4.3, Tetgen

The most important element of this modified object simulation system, GPU, was Nvidia
GeForce GTX 760Ti. The GPU has a 915MHz Graphics Clock and a 980MHz Processor
Clock. Both phases of the simulation system were run in the above implementation
environment, and the experiment was performed in the same environment.

The following figure shows the multi deformable object simulation system implemented in
this research.

Fig. 11. Free fall simulation of multiple sphere models

Fig. 12. Collision simulation of multiple sphere models

4130 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

The alphabet simulation is a free fall of five alphabets and checks for collisions with other
alphabets and floors. The sphere simulation moves to the same place and checks for collisions
in a gravity-free situation. In this research, the system is implemented to simulate up to 5,000
frames. The maximum 5,000 frames we set in the system is the minimum frame condition in
which objects fall and collide sufficiently.

4.3. Performance measurement experiment of simulation system
In this research, we compare the average frame per sec (FPS) to compare the simulation
performance with the GPU in the CPU and the performance comparison with the bounding
box. Simulation on CPU and GPU was performed by Face-Face Intersection after first
collision check through the bounding box. The model used in the experiment was the same in
CPU and GPU, and the average FPS was calculated 10 times in the same environments. The
following table compares the average FPS on CPU and GPU.

Table 3. Experimental 1 : Performance comparison between CPU and GPU

Simulation
FPS Average

In CPU

FPS Average

In GPU

Performance

Improvements

FreeFall
Multiple sphere models

1.34 FPS 131.66 FPS 98.9%

Collision
Multiple sphere models

4.2 FPS 218.11 FPS 98.0%

Experimental results show about 98 times performance improvement compared to CPU
multi deformable object simulation. Although the CPU showed about 1.34, 4.2 FPS, the
parallel simulation system with GPU shows 131.66, 218.11 FPS which exceeded 30 FPS,
which is the minimum condition that does not give a sense of discomfort to the user.

Experiment 1 performs simulation including Bounding Box and Experiment 2 performs
simulation that does not include Bounding Box in order to perform performance comparison
according to presence or absence of bounding box in GPU. The experiment was performed 10
times in the same environment. Experiments are performed only until a collision occurs to
compare the computation speeds associated with the collision tests before the collision.

Table 4. Experimental 2 : Performance comparison between without bounding box and with bounding

box

Simulation
Without Bounding

Box

With Bounding

Box

Performance

Improvements

Free fall
multiple sphere models

39.11 FPS 249.45 FPS 84.3%

Collision
multiple sphere models

71.38 FPS 343.82 FPS 79.2%

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4131

Experimental results show a performance improvement of more than about 80% over the
case of continuous Face-Face Intersection without collision. By eliminating unnecessary
collision check operations, the overall operation speed of the simulation system can be
improved.

5. Conclusions

In this research we implemented multi deformable object simulation using OpenGL shader
language, GLSL 4.3. We performed deformable object simulation that which requires many
operations in parallel using GLSL 's Compute Shader. Our research showed a 98% to 99%
performance improvement over the CPU-based simulation system using GPU parallel
simulation system. We also used the bounding box method to efficiently perform collision
detecting which takes up a large computational cost of the physics simulation system. It
showed about 80% performance improvement compared to face-face intersection method
which checks all faces of object. However, the one-level bounding box method that surrounds
the outer surface of the object used in this study has a disadvantage in that it can not know the
exact collision position of the object. This again increases the cost of the operation by using
face-face intersection which checks all faces. In future works, it is expected that using
hierarchical bounding box method will be able to find the exact collision position and optimize
the operation for collision inspection more. It is expected that faster collision detection can be
performed by applying the occlusion check algorithm using depth buffer.

References
[1] M. Hong, J.H. Jeon, H.S. Yum, S.H. Lee, “Plausible mass-spring system using parallel computing

on mobile devices,” Human-centric Computing and Information Sciences, vol. 6, no. 1, pp. 2016.
Article(CrossRef Link)

[2] Vassilev, T. Ivanov, S. Bernhard, “A mass-spring model for real time deformable solids,” 2002.
Article(CrossRefLink)

[3] J.H. Jeon, M.H. Choi, M. Hong, “Enhanced FFD-AABB Collision Algorithm for Deformable
Objects,” Journal of Information Processing Systems, vol. 8, no. 4, pp. 713~720, 2012.
Article (CrossRefLink)

[4] Selle, Andrew, Michael Lentine and Ronald Fedkiw, “A mass spring model for hair
simulation,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, 2008. Article(CrossRef Link)

[5] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram, Onur Mutlu, Ravishankar Iyer, Chita R.
Das, “OWL: cooperative thread array aware scheduling techniques for improving GPGPU
performance,” ACM SIGPLAN Notices, vol. 48, no. 4, 2013. Article(CrossRef Link)

[6] Campos, R. S, Lobosco, M, dos Santos, R. W, “A GPU-based heart simulator with mass-spring
systems and cellular automaton,” The Journal of Supercomputing 2014, vol. 69, no. 1, pp. 1-8,
2014. Article(CrossRef Link)

[7] S. Collange, M. Daumas, D. Defour, D. Parello, “Barra: A parallel functional simulator for gpgpu.
In Modeling,” in Proc. of Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2010 IEEE International Symposium, pp. 351-360, Aug, 2010.
Article(CrossRef Link)

[8] Khronos Group, OpenGL 4.3, 2012. Article(CrossRef Link)
[9] D. Shreiner, G. Sellers, J. Kessenich, B. Licea-Kane, “OpenGL programming guide: The Official

guide to learning OpenGL, version 4.3,” 2013. Article(CrossRef Link)

https://link.springer.com/article/10.1186/s13673-016-0079-9
http://dx.doi.org/10.1109/ICMT.2011.6001862
https://doi.org/10.3745/JIPS.2012.8.4.713
https://doi.org/10.1145/1360612.1360663
https://doi.org/10.1145/2499368.2451158
http://doi.org/10.1007/s11227-014-1199-5
https://doi.org/10.1109/MASCOTS.2010.43
http://opengl.org/
https://books.google.co.kr/books?hl=ko&lr=&id=jG4LGmH5RuIC&oi=fnd&pg=PT27&dq=glsl+compute+shader&ots=q2JLx7oED_&sig=a_zcefnuyMo6G8jTsXFcMP6ZopM%23v=onepage&q=glsl%20compute%20shader&f=false

4132 Sung et al.: Simulation of Deformable Objects using GLSL 4.3

[10] Khonos Group, OpenGL WIKI, “Compute Shader.” Article(CrossRef Link)
[11] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,” ACM Transactions on

Mathematical Software (TOMS), vol. 41, no. 2, 2015. Article(CrossRef Link)
[12] Tetgen, The Tetrahedron Mesh Model Generator. Article(CrossRef Link)
[13] S. Redon, A. Kheddar, S. Coquillart, “Fast Continuous Collision Detection between Rigid

Bodies,” Computer graphics forum, vol. 21, no. 3, pp. 279-287, 2002. Article(CrossRefLink)
[14] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, K. Zikan, “Efficient collision detection using

bounding volume hierarchies of k-DOPs,” IEEE transactions on Visualization and Computer
Graphics, vol. 4, no. 1, pp. 21-36, 1998. Article(CrossRef Link)

Nak-Jun Sung received the BS degrees in Computer Software Engineering from
Soonchunhyaung University in 2016. Now he is undertaking a master degree of computer
engineering courses as a member of the computer graphics lab at Soonchunhyang
University. His research interests are computer graphics, GPGPU, VR (Virtual Reality)
and AR (Augmented Reality)

Min Hong is an Professor at the Department of Computer Software and Engineering,
Soonchunhyang University in Asan, Korea. He received BS in Computer Science from
Soonchunhyang University in 1995. He also received MS in Computer Science and PhD
in Bioinformatics from the University of Colorado in 2001 and 2005, respectively. His
research interests are in Computer Graphics, Mobile Computing, Physically-based
Modeling and Simulation, Bioinformatics Applications, and u-Healthcare Applications.
In present, he is a Director of Computer Graphics Laboratory at Soonchunhyang
University

Seung-Hyun Lee is a Associate Professor, School of Architectural Engineering,
Hongik University. He received his B.S 1996 Inha University, and his M.S 1999
University of Colorado at Boulder, Ph.D. 2003 University of Florida at Gainesville
2004~2008:Korea Institute of Construction Engineering, Senior Researcher.
2008~Current: Hongik University, Associate Professor. Interesting Research Area:
Process Simulation, Productivity, Construction Information Technology, Image
Processing, Automatic Data Acquisition

Yoo-Joo Choi is a Professor in Department of Newmedia at Seoul Media Institute of
Technology(SMIT), Korea. She received her M.S. and Ph.D. degrees in Computer
Science from Ewha Womans University in 1991 and 2005, repectively. She was a
researcher at R&D Department of KCI Co. and POSDATA Co. in Korea between 1991
and 1999. Her research interests include image processing, computer vision, computer
graphics, augmented reality and human-computer interaction.

https://www.opengl.org/wiki/Compute_Shader
https://doi.org/10.1145/2629697
http://wias-berlin.de/software/tetgen/
https://doi.org/10.1111/1467-8659.t01-1-00587
https://doi.org/10.1109/2945.675649

