• Title/Summary/Keyword: 4D model

Search Result 5,054, Processing Time 0.031 seconds

Inelastic Stress Analysis of 1/4 Scale Prestressed Concrete Containment Vessel Model (프리스트레스 콘크리트 격납건물 1/4 축소모델의 비탄성응력해석)

  • 이홍표;전영선;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.301-308
    • /
    • 2004
  • The present study mainly focuses on the inelastic stress analysis of the 1/4 scale prestressed concrete containment vessel model(PCCV) under internal pressure and evaluates not only failure mode but also ultimate pressure capacity of the PCCV. Inelastic analysis is carried out 2D axisymmertic FE model and 3D FE model using four concrete material models which are Drucker-Prager Model, Chen-Chen Model, Damaged Plasticity Model and Menetrey-Willam Model. The uplift phenomenon of the basemat is considered in the 2D axisymmetric FE models. It is found from the 2D axisymmetric analysis results that both of Drucker-Prager model and Damaged Plasticity Model have a good performance and the uplift of the basemat is too small to influence on the global behavior of the PCCV. The FE analysis results on the ultimate pressure and failure mode have a good agreement with experimental results.

  • PDF

A Study on a Technique for Simplifying the Connection of a 3D Model and Schedule Information for 4D Simulation (4D 시뮬레이션을 위한 3D 모델 및 공정 정보의 연계 간소화 기법 연구)

  • Park, Sang Mi;Lee, Jae Hee;Yoon, Hyeong Seok;Hwang, Jae Yoeng;Kang, Hyo Jeong;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.861-868
    • /
    • 2022
  • A key use of applying building information modeling (BIM) to the construction stage of a project is to help identify construction obstacles and to visualize construction status according to the progress of the construction schedule. When employing 4D simulation for this purpose, start and finish dates for each activity and a 3D model of the activity must be prepared. In this work, in order to simplify the configuration of a 4D model, minimum attribute information of the BIM model produced in the design stage was used to construct a system that generated activity information in the construction stage using a clustering algorithm. Its usefulness as actual schedule management information was then analyzed.

A Study on Aeroelastic Characteristic using Two-dimensional Full Aircraft (전기체 2차원 모델을 이용한 공력탄성학적 특성에 관한 연구)

  • Bong-Do Pyeon;Jae-Sung Bae
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.10-17
    • /
    • 2024
  • Solar-powered unmanned aerial vehicles(SPUAV), which are being actively developed domestically and internationally, generally feature high aspect ratio(AR) wings. These high AR wings necessitate a lightweight design as their weight increases, rendering them susceptible to flutter. Consequently, flutter analysis is critical from the initial design phase. Typically, flutter analysis is conducted using a standard section wing or more precisely through a 3D model. However, due to the extended analysis time required by 3D models, this study opts for a 2D aircraft model. The 2D model computes faster than the 3D model and intuitively secures the flutter boundary. In this study, a structural/aerodynamic force model of the 2D aircraft was established, and the findings were compared with those from a 3D half model. The results showed that the flutter analysis between the 2D model and the 3D half model was similar, within about a 3% margin, thus validating the proposed 2D model's effectiveness.

4H-SiC MESFET Large Signal Modeling using Modified Materka Model (Modified Materka Model를 이용한 4H-SiC MESFET 대신호 모델링)

  • 이수웅;송남진;범진욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.890-898
    • /
    • 2001
  • 4H-SiC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco\`s 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8 V pinch off voltage, under V$\_$GS/=0 V, V$\_$DS/=25 V conditions, I$\_$DSS/=270 mA/mm, G$\_$m/=52.8 ms/mm were obtained. Through the power simulation 2 GHz, at the bias of V$\_$GS/-4 V md V$\_$DS/=25 V, 10 dB Gain, 34 dBm (1dB compression point)output porter, 7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.d.

  • PDF

Information Modeling of Modular Bridge Pier using BIM Based 3D-Model Library (BIM 기반 3차원 모델 라이브러리를 통한 모듈러 교각의 정보모델링)

  • Jo, Jae-Hun;Kim, Dong-Wook;Lee, Kwang-Myong;Nam, Sang-Hyeok
    • Journal of KIBIM
    • /
    • v.3 no.4
    • /
    • pp.11-18
    • /
    • 2013
  • Modular technology has become a major issue of the construction industries to enhance their productivity. Modular bridge construction generally requires the collaboration between the contractor, designer, fabricator and constructor. Therefore, a readily accessible information model based on BIM technology should be provided for their communication during a construction project life-cycle. In this study, BIM based 3D information modeling was carried out for the modular bridge pier. First, the product breakdown structure (PBS) and level of detail (LOD) of the pier were defined. Based on them, 3D models were created by using parametric modeling method. In addition, database was constructed for the exchange of geometry and property data of 3D models. Finally, application areas of 3D information model were suggested, including the quantity estimation and the 4D simulation.

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

Development and Application of Technology Modular Alternatives Setting Model for Evaluating R&D Project Effectively (효율적인 R&D과제평가를 위한 기술대체모듈 설정모형의 개발 및 적용)

  • Kwon, Cheol-Shin;Kim, Ki-Chan;Ahn, Ki-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.22-31
    • /
    • 2010
  • In R&D project evaluation, we consider the technical couple. And we set technology modular alternatives, after evaluating technical group based on technical couple. So we solve the problem extracted from existing research of R&D project evaluation. We use Conjoint Analysis(CA) for this research. CA is usually used for confirming customers' preference. However we use it for researchers' preference in the side of technology. This research is followed by the next 4 steps. (1) Hierarchical model of goal technology (2) Composition model of modular alternatives (3) Evaluation model of modular alternatives (4) Setting model of technology modular alternatives.

Generalization of the Curie-Weiss Model to the D-dimensional Spin System

  • Hyung-june Woo;Eun Kyung Lee;Eok-Kyun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.485-487
    • /
    • 1993
  • The critical behavior of the classical D-dimensional spin model (D${\ge}$2), which is intermediate model that link up the Ising (D = 1) and the spherical model (D = ${\infty}$), is studied for the case of constant coupling interaction independent of the spin-spin distance (Curie-Weiss model). Analytical results show that the critical behavior of the present model is in quantitative agreement with the prediction of the phenomenological mean-field theory independent of D. Critical temperature is calculated to be T$_c$=k/JD. This gives a quantitative explanation of the relationship between the spin degree of freedom and the critical temperature.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Application Technology of Multi-texturing for Effective Representation of Natural Ground on the 4D System for Civil Engineering Projects (토목공사용 4D 시스템의 효율적인 자연지형 표현을 위한 멀티텍스처링 기법 적용기술 개발)

  • Kang Leen-Seok;Kwak Joong-Min;Jee Sang-Bok;Kim Chang-Hak;Lee Yong-Su
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • 4D system has applied to construction project as a management tool after the late 1990's. Various 4D systems have been developed, however they have some problems that should be improved. Especially, the 4D system for civil engineering project needs synthesized 3D model between natural ground condition and physical facility type. It is a different problem comparing with the system for building project. 1'his study suggests an automatically synthesizing methodology between ground triangulate network and design triangulate network. Furthermore the study develops an application methodology of multi-texturing technique defined in virtual reality modeling language (VRML) for skipping the 3D model synthesizing process from the 4D model development processes. The suggested methodology is applied to the prototype of real 4D system. The proposed technique for 3D modeling may be used as an essential methodology for developing 4D system for civil engineering projects.

  • PDF