• 제목/요약/키워드: 3T3-L1 cell$PPAR{\gamma}$$C/EBP{\alpha}$

검색결과 56건 처리시간 0.033초

Effect of Fucoidan on Expression of Diabetes Mellitus Related Genes in Mouse Adipocytes

  • Kim, Kui-Jin;Lee, Ok-Hwan;Lee, Han-Chul;Kim, Young-Cheul;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.212-217
    • /
    • 2007
  • Fucoidan (fucan sulfate) is a fucose-containing sulfated polysaccharide from brown algae such as Fucus vesiculosus, Ecklonia kurome, and Cladosiphon okamuranus. The aim of this study was to investigate the effect of fucoidan on the expression of diabetes-related genes in mouse cell line 3T3-L1. 3T3-L1 adipocytes were cultured for 48 hr with or without fucoidan (10, 100, and 500 ppm) on a 60 mm dish. Reverse transcription polymerase chain reaction (RT-PCR) was used for measurement of peroxisome proliferators activated receptor ${\gamma}\;(PPAR{\gamma})$, CCAAT/enhancer binding protein ${\alpha}\;(C/EBP{\gamma})$, and glucose transporter 4 (GLUT4) RT-PCR analysis revealed that expression level of GLUT4, $PPAR{\gamma}$, and $C/EBP{\alpha}$ mRNAs increased with fucoidan treatment from 10 to 500 ppm in a dose-dependent manner. Fucoidan appears to enhance insulin sensitivity by increasing the expression level of diabetes-related genes in 3T3-L1 adipocytes. Therefore, fucoidan is potentially useful as a natural therapeutic material for hyperglycemia in type II diabetes patients.

지방전구세포와 고지방식이비만마우스에서 가미곽향정기산의 전탕액과 발효액의 항비만효과 (The Antiobese Effects of Gamikwakhyangjungkisan and Fermented GamiKwakhyangjungkisan in Preadipocytes and Mice Fed High Fat Diet)

  • 김주희;박은정
    • 대한한방소아과학회지
    • /
    • 제29권2호
    • /
    • pp.37-48
    • /
    • 2015
  • Objectives This experimental study was designed to investigate the antiobese effects of Gamikwakhyangjungkisan and Fermented GamiKwakhyangjungkisan. Methods The cellular lipid contents were assessed by Oil-Red-O staining. The expression of $PPAR{\gamma}$ and $C/EBP{\alpha}$ were determined by real time RT-PCR and western blotting. In addition, body weight gain and serum lipid levels were measured in the mice with obesity induced by the high fat-diet for four weeks. Results Gamikwakhyangjungkisan and Fermented GamiKwakhyangjungkisan is reduced 3T3-L1 cells' differentiation and the expressions of $PPAR{\gamma}$ and $C/EBP{\alpha}$ in high concentration group. High-fat diet + Fermented GamiKwakhyangjungkisan group significantly reduced body weight gain. High-fat diet + Fermented GamiKwakhyangjungkisan group significantly increased HDL-cholesterol contents and reduced LDL-cholesterol contents. Furthermore, Fermented GamiKwakhyangjungkisan is excellent antiobese effects than Gamikwakhyangjungkisan. Conclusions These results demonstrate that Gamikwakhyangjungkisan and Fermented GamiKwakhyangjungkisan exerts antiobese effect in 3T3-L1 cells and mice fed high fat diet. Furthermore, Fermented GamiKwakhyangjungkisan is excellent antiobese effects than Gamikwakhyangjungkisan.

상엽(桑葉) 함유 한약복합제 추출물의 항비만(抗肥滿)효과 연구 (The Study on Anti-obesity Effects of Mulberry Leaves Contained Herbal Mixture)

  • 박종익;강경하;박은정
    • 대한한방소아과학회지
    • /
    • 제27권4호
    • /
    • pp.17-30
    • /
    • 2013
  • Objectives This experimental study was designed to investigate the effects of Mulberry leaves contained herbal mixture (MLHM) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Methods Four-week old mice (wild-type C57/BL6) were used for all experiments. Cells were incubated with MLHM at the indicated concentration (0.04-4mg/ml) for 24h, and growth rate was assessed by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of MLHM, and on Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. In addition, body weight gain and serum lipid levels were measured in the mice with obesity induced by the high fat-diet for four weeks. Results Though MLHM did not show toxicity even at the concentration of 4mg/ml, MLHM significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner. Also, MLHM significantly reduced the expressions of PPAR ${\gamma}$ and C/EBP ${\alpha}$ in a dose-dependent manner. Furthermore, MLHM significantly reduced body weight gain and LDL-cholesterol contents in high fat diet-fed obese mice. Conclusions These results demonstrate that MLHM exerts anti-obesity effect in 3T3-L1 cells and mice with obesity by high-fat diet.

댕댕이나무 열매 추출물이 지방전구세포와 마우스 지방유래줄기세포의 분화 및 지방 생성 억제에 미치는 영향 (Effects of Lonicera caerulea extract on adipocyte differentiation and adipogenesis in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs))

  • 박미의;이창호;이해정
    • Journal of Nutrition and Health
    • /
    • 제52권1호
    • /
    • pp.17-25
    • /
    • 2019
  • 본 연구에서는 댕댕이나무 열매 추출물이 3T3-L1과 마우스 지방유래줄기세포의 지방 분화유도 및 지방생성에 미치는 영향을 살펴보았다. 3T3-L1에 댕댕이나무 열매 추출물을 처리하였을 때, 농도의존적으로 지방구의 생성을 줄였고 지방세포 분화에 있어서 중요한 전사인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1의 발현을 억제시켜 지방 합성이 감소됨을 확인하였다. 또한, 마우스 지방에서 분리한 줄기세포의 지방 분화과정에서도 댕댕이나무 열매 추출물이 $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP1의 단백질 발현을 감소시켜 지방 축적을 농도 의존적으로 억제하였다. 이상의 결과로 댕댕이나무 열매 추출물은 세포독성이 없는 농도에서 지방 세포의 분화를 억제 하는 것으로 확인되어 항비만 기능성 소재로서의 활용 가능성이 있을 것으로 사료된다.

Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

  • Yang, Soo Jin;Park, Na-Young;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • 제8권6호
    • /
    • pp.613-617
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS: The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha ($C/EBP{\alpha}$), peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), $PPAR{\gamma}$ coactivator 1 alpha (PGC-$1{\alpha}$), fatty acid synthase (FAS), and adiponectin were analyzed. RESULTS: Results showed that MLEE treatments at 10, 25, 50, and $100{\mu}g/ml$ had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and $100{\mu}g/ml$ significantly reduced protein levels of $PPAR{\gamma}$, PGC-$1{\alpha}$, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of $C/EBP{\alpha}$ was significantly decreased by the treatment of $100{\mu}g/ml$ MLEE. CONCLUSION: These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic.

Inhibitory Effect of the Ethyl Acetate Fraction from Tulip Tree Leaf (Liriodendron tulipifera L.) on Adipogenesis in 3T3-L1 Cells

  • Nam, Hajin;Jung, Harry;Kim, Jin Kyu;Suh, Jun Gyo
    • Natural Product Sciences
    • /
    • 제19권3호
    • /
    • pp.263-268
    • /
    • 2013
  • The inhibitory effects of adipogenesis on ethyl acetate (EtOAc) fraction from leaves of the Tulip tree (TT) were evaluated. Exposure to TT EtOAc fraction (25~200 ${\mu}g/mL$) for a 72 hr incubation period did not significantly change cell viability. TT EtOAc fraction, with concentrations of 100 and 200 ${\mu}g/mL$, inhibited lipid accumulation in 3T3-L1 adipocytes in a dose dependent manner in adipogenesis. The expression of $PPAR{\gamma}$ and $C/EBP{\alpha}$, essential adipogenic markers, was significantly decreased when TT EtOAc fraction was added to cells for 8 days as compared with the untreated control group. These results suggest that TT EtOAc fraction might be a potential therapeutic agent as an effective, natural alternative material for obesity treatment.

Silibnin의 지방세포분화 억제 및 세포사멸 유도 효과 (Silibinin Inhibits Adipogenesis and Induces Apoptosis in 3T3-L1 Adipocytes)

  • 이슬기;권택규;남주옥
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.27-34
    • /
    • 2017
  • CCAAT/enhancer-binding protein beta, delta ($C/EBP{\beta}$, ${\delta}$)는 지방세포분화 과정의 초기에 필수적으로 요구되며 지방생성 주요 조절인자인 proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$)의 발현을 유도한다. 본 연구에서는 silibinin의 지방세포 분화 억제 효과 및 이러한 효과가 지방세포 분화초기에 $C/EBP{\beta}$$C/EBP{\delta}$의 발현 조절을 통해 일어난 다는 것을 확인하였다. Silibinin은 지방세포 내 지질축적을 억제하고 세포분화 과정 동안 관여하는 다양한 유전자의 mRNA 발현을 억제하였다. 또한 lipoprotein lipase (LPL), fatty acid binding protein 4 (AP2) 및 adiponectin과 같은 지방세포 분화 관련 유전자의 발현을 억제시켰다. 따라서, Silibinin의 지방세포 분화 억제효과는 $C/EBP{\beta}$$C/EBP{\delta}$의 발현억제에 의한 것으로 보인다. 더불어, Silibinin은 capspase-3 활성을 통해 분화하는 세포에 특이적으로 세포사멸을 유도하는 것을 확인하였다.

Acer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kim, Eun-Joo;Kang, Min-jae;Seo, Yong Bae;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1645-1653
    • /
    • 2018
  • The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP ${\alpha}$). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR ${\gamma}$. LEAO also activated ${\beta}$-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR ${\gamma}$. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • 한방비만학회지
    • /
    • 제20권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

차전초의 에탄올추출물이 3T3-L1 지방세포의 지방축적 및 지질대사에 미치는 영향 (Ethanol extract of Plantago asiatica L. controls intracellular fat accumulation and lipid metabolism in 3T3-L1 Adipocytes)

  • 전서영;박지영;신인순;김성옥;안희덕;김미려
    • 대한본초학회지
    • /
    • 제29권4호
    • /
    • pp.77-82
    • /
    • 2014
  • Objectives : The effects of ethanol extract of Plantago asiatica L. were investgated on adipocyte differentiation, lipopogenesis, lipolysis and apoptosis using differnentiated 3T3-L1 adipocytes. Methods : Plantago asiatica L. was extracted with ethanol (CCE). We carried on MTT assay for cell proliferation, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. TUNEL staining assay for cell apoptosis, and Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ protein expressions were performed. Results : The addition of CCE up to 0.2 mg/ml into cell culture media showed no cytotoxicity. Treatment of 0.2 mg/ml CCE significantly inhibited differentiation in 3T3-L1 preadipocytes. Lipid accumulation of the CCE treated cells was decreased compared with that of control. Induction of cell apoptosis was increased in CCE treated cells compared with that of control. AMPK and ACC levels of the cells with 0.2 mg/ml CCE were led to phosphorylation and also expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, as adipogenic transcription factors, were suppressed compared with those of control. Conclusions : Taken together, these results provide evidence that CCE has a regulatory role in lipid metabolism that is related to differentiation into adipocytes, adipogenesis and apoptosis.