• Title/Summary/Keyword: 3T3 L1 cells

Search Result 981, Processing Time 0.042 seconds

Effects of Fragaria Orientalis Water extract on Adipogenesis and Cell Differentiation in 3T3-L1 Cells (3T3-L1 지방 전구세포의 분화 및 지방 생성에 미치는 Fragaria Orientalis L. 물 추출물의 영향)

  • Moon-Yeol Choi;Mi Hyung Kim;Mi Ryeo Kim
    • The Korea Journal of Herbology
    • /
    • v.39 no.3
    • /
    • pp.49-56
    • /
    • 2024
  • Objective : Obesity, which has recently been rapidly increasing in the obese population, is caused by an imbalance in energy intake and consumption. The reason why we need to manage obesity well is that the prevalence of complications such as diabetes, atherosclerosis, insulin resistance, and cardiovascular disease increases. In this study, the effect of FO (Fragaria orientalis) water extract on fat metabolism in 3T3-L1 cells was observed to develop a new anti-obesity material based on Mongolian medical books. Methods : The effect of FO extract on adipogenesis in 3T3-L1 cells was observed using DPPH scavenging, pancreatic lipase inhibitory activity, MTT analysis and Oil-red-O staining method. And the expression of proteins related to lipid metabolism was analyzed by Western blot. Results : The FO group significantly increased the DPPH radical scavenging activity at 5 mg/ml compared to the positive control BHA at 0.1 mg/ml. In oil red O staining at a safe concentration without cytotoxicity, lipid accumulation was significantly inhibited by less than 80% compared to the control group at all concentrations. Moreover, treatment of FO significantly increased the expression of proteins related to lipid metabolism, such as p-AMPK and p-ACC, in 3T3-L1 cells, and the expression of CPT-1 tended to increase in a dose-dependent manner. However, the expression of PPAR-γ was significantly decreased in a dose-dependent manner. Conclusion : These results suggest that FO water extract has a potential anti-obesity effect and are expected to be utilized in the development of materials for obesity prevention and treatment.

Comparative Study on the Differentiation Effect of Adipogenesis in 3T3-L1 Preadipocyte by 65 Herbal Medicine Prescriptions (65종 한약처방이 3T3-L1 지방전구세포의 지방 분화에 미치는 효능 비교 연구)

  • Choi, Hye-Min;Yu, Byung-Woo;Kim, Min-Ju;Kim, Jung-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To expand and provide information on the efficacy of herbal medicines, anti-obesity effects were evaluated. In many studies, plant-derived components with anti-obesity efficacies have been investigated for their potential inhibitory effects on 3T3-L1 preadipocyte cells. The purpose of this study was to investigate the anti-obesity effects of 65 herbal medicine in 3T3-L1 preadipocyte cells. Methods: Preferentially, 3T3-L1 cells were treated with 65 herbal medicines (500 ㎍/mL) during differentiation for 8 days. Next, 3T3-L1 cells were treated with selected herbal medicines at concentrations ranging from 50 to 200 ㎍/mL during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining. The expressions of genes related to adipogenesis were measured by reverse transcription polymerase chain reaction and Western blot analyses. Results: Among the 65 kinds of herbal medicines, 13 herbal medicines that been shown to be effective against the accumulation of lipid droplets were selected. Finally, selected Banhasasim-tang and Samhwangsasim-tang showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affecting cell toxicity. In addition, Banhasasim-tang and Samhwangsasim-tang significantly reduced the expression levels of several adipocyte marker genes including peroxisome proliferator activated receptor-γ and CCAAT/enhancer binding protein-α. Conclusions : These results suggest that the ability of Banhasasim-tang and Samhwangsasimtang has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. Banhasasim-tang and Samhwangsasim-tang may be a promising medicine for the treatment of obesity and related metabolic disorders.

Inhibition of Adipogenesis in 3T3-L1 Adipocytes with Ethanol Extracts of Saururus chinensis (삼백초 추출물의 3T3-L1 세포에 대한 지방축적 억제효과)

  • Shin, Ok-Su;Shin, Youn-Ho;Lee, Kang-Hyun;Kim, Gun-Yong;Kim, Ki-Ho;Park, Jung-Keug;Ahn, Jae-Il;Song, Kye-Yong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.381-386
    • /
    • 2012
  • Obesity increases the risk of many adult diseases, such as atherosclerosis, diabetes, hypertension, ischemic heart disease and breast cancer. Inhibition of adipogenesis is an effective way in the anti-obesity management. Because of main components of Saururus chinensis is flavonoid, it has been showed some improvement by its antioxidant effects on the atherosclerosis, heart disease and diabetic hyperlipidemia. But mechanism of anti-obesity effect of S. chinensis is not clear. We investigated the effects of ethanol extracts of S. chinensis on adipogenesis in the 3T3-L1 pre-adipocyte. The 3T3-L1 cell line is commonly used to study adipogenesis in vitro. In this study, ethanol extracts of S. chinensis significantly decrease the lipid accumulation in the 3T3-L1 cells proved by measuring triglyceride contents and Oil red O staining. The proposed mechanism of inhibition of adipogenesis in the 3T3-L1 cells with ethanol extracts of S. chinensis is down-regulation of transcriptional factors and adipocyte-specific genes such CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$) and Peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$) in concentration dependent pattern. These results suggest that ethanol extracts of S. chinensis inhibits adipognesis in the 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

Inhibitory Effects of 14 Plants from Mongolia and Myanmar on Lipid Accumulation in 3T3-L1 and HepG2 Cells (몽골과 미얀마 식물 14종의 3T3-L1 및 HepG2 세포에서 지질 축적 억제효과)

  • Kim, SukJin;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.130-142
    • /
    • 2021
  • This study examined the antioxidative and lipid accumulation inhibitory effects of 14 plants from Mongolia and Myanmar on 3T3-L1 and HepG2 cells. The total phenolic and flavonoid contents (TPC and TFC) of 14 plant extracts were measured, and the antioxidative activities were analyzed using DPPH, ABTS, FRAP, and ORAC. After measuring the pancreatic lipase levels and performing the thiobarbituric acid assay, the degree of lipid accumulation was determined by lipid (Oil Red O) staining and triglyceride assay in 3T3-L1 and HepG2 cells. M. paniculate (259.43 mgGAE/g) and C. benghalensis (130.78 mgNAE/g) had the highest TPC and TFC, respectively, among the 14 plants. R. acicularis Lindl. had the highest antioxidant activity in DPPH. The ABTS, FRAP, and ORAC results showed that the antioxidant activity of 11 species was higher than that of the positive control. The pancreatic lipase inhibitory effect of C. angustifolium Scop. was reduced to 23.65% at 0.1 mg/mL, and the level of lipid peroxidation of C. abrorescens Lam. was 0.63 nmol/mg. Five selected plants inhibited the lipid accumulation and triglyceride content, respectively, in 3T3-L1 and HepG2 cells. These results provide scientific evidence for developing functional foods using 14 plants from Mongolia and Myanmar, which have antioxidant activities and lipid accumulation reduction effects.

The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells

  • Hashimoto, Takeshi;Okada, Yoko;Yamanaka, Atsushi;Ono, Natsuhiko;Uryu, Keisuke;Maru, Isafumi
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.13-18
    • /
    • 2020
  • [Purpose] In vivo studies have demonstrated the ergogenic benefits of eleutherococcus senticosus (ES) supplementation. ES has been observed to enhance endurance capacity, improve cardiovascular function, and alter metabolic functions (e.g., increased fat utilization); however, the exact mechanisms involved remain unknown. We aimed to determine whether ES could effectively induce fat loss and improve muscle metabolic profiles through increases in lipolysis- and lipid metabolism-associated protein expression in 3T3-L1 adipocytes and C2C12 skeletal muscle cells, respectively, to uncover the direct effects of ES on adipocytes and skeletal muscle cells. [Methods] Different doses of ES extracts (0.2, 0.5, and 1.0 mg/mL) were added to cells (0.2 ES, 0.5 ES, and 1.0 ES, respectively) for 72 h and compared to the vehicle control (control). [Results] The intracellular triacylglycerol (TG) content significantly decreased (p < 0.05 for 0.2 ES, p < 0.01 for 0.5 ES and 1.0 ES) in 3T3-L1 cells. Adipose triglyceride lipase, which is involved in active lipolysis, was significantly higher in the 1.0 ES group than in the control group (p < 0.01) of 3T3-L1 adipocytes. In C2C12 cells, the mitochondrial protein voltage-dependent anion channel (VDAC) was significantly increased in the 1.0 ES group (p < 0.01). Furthermore, we found that 1.0 ES activated both 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in skeletal muscle cells (p < 0.01). [Conclusion] These findings suggest that ES extracts decreased TG content, presumably by increasing lipase in adipocytes and metabolism-associated protein expression as well as mitochondrial biogenesis in muscle cells. These effects may corroborate previous in vivo findings regarding the ergogenic effects of ES supplementation.

Esculetin Inhibits Adipogenesis and Increases Antioxidant Activity during Adipocyte Differentiation in 3T3-L1 Cells

  • Kim, Younghwa;Lee, Junsoo
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • This study was conducted to investigate the anti-adipogenic activity of esculetin (ECT) which is reported to be attributable to the modulation of antioxidant enzymes during adipogenesis. After six days of ECT treatment of 3T3-L1 cells, lipid accumulation was determined by Oil red O staining. The levels of glutathione (GSH) and reactive oxygen species (ROS), and the activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase (GPx), and catalase were examined. In addition, the protein expression of glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) was measured by Western blot. ECT significantly inhibited lipid accumulation by approximately 80% and ROS production in a concentration-dependent manner. GSH level and GPx activity were increased by ECT by approximately 1.3-fold and 1.7-fold compared to the control group, respectively. GCLC and HO-1 expression were elevated by ECT. These results showed that ECT treatments strongly inhibit adipogenesis, increase GSH level, and upregulate the expression of GCLC and HO-1, possibly by decreasing ROS production in 3T3-L1 cells during adipogenesis.

Effect of Edible Flower Extracts on Antioxidative and Biological Activities (식용꽃 추출물이 항산화 및 세포의 생리활성에 미치는 영향 - 유채꽃, 칡꽃, 장미꽃을 중심으로 -)

  • 전혜경;최남순;박선영;유병선
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • In order to promote the value of the flowers as new agricultural products, we investigated the biological activities of rape, arrowroot, and rose extracts. Biological activities investigated included antioxidant activity and the effects on 3T3-L1 fibroblast cells. When each flower was extracted with methanol, the antioxidant index and electron donating activity of roses was the highest $(IC_{50}$ of rose extract was $17.6 \mu{g}/m\ell$). When 3T3-L1 fibroblast cells were treated with extracts made with hexane, ethyl acetate, and ether, the rape extracts had a cytotoxic effect on the cells. 12.2% of cells survived when treated with a 3mg/$m\ell$ ether extract while those treated with the same concentration of hexane and ethyl acetate had survival rates of 76.2% and 78.6% respectively. In contrast to rape, the ether extract of arrowroot and rose stimulated the growth of 3T3-L1 cells. The effect of rose extracts was much bigger than those of other extracts. Although every rose extract stimulated the growth of the 3T3-L 1 cells, the ether extract stimulated growth up to 168.6% compared to the control at the concentration of $0.3mg/m\ell$, and 148.3% at the concentration of $1mg/m\ell$. The toxicity on cells treated with $H_2 O_2$ of $450\mu{M}l$was decreased with the addition of rose extract. The survival rate after treatment with rose extract at the concentration of $100\mu{g}/m\ell$ was increased to 71% compared to the 32% survival rate of control. From these results, it can be concluded that the extracts of arrowroot and rose seem to stimulate cells, whereas the extract of rape has a cytotoxic effect. Biological activities of ether extract were the strongest compared to those of other extracts at the tested concentrations.

  • PDF

Comparison of Diglyceride, Conjugated Linoleic Acid, and Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Preadipocytes

  • Jeong, Jae-Hwang;Lee, Sang-Hwa;Hue, Jin-Joo;Lee, Yea-Eun;Lee, Young-Ho;Hong, Soon-Ki;Jeong, Seong-Woon;Nam, Sang-Yoon;Yun, Young-Won;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.145-150
    • /
    • 2007
  • Conjugated linoleic acid (CLA) reduces fat deposition in several mammalian species. The proposed mechanisms for this effect are reduced preadipocyte proliferation and differentiation. The objective of this study was to investigate the inhibitory effects of diglyceride (DG), CLA, DG-CLA of proliferation and differentiation of 3T3-L1 preadipocytes. Cell viability was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was measured by Oil red O staining. The proliferation of preconfluent 3T3-L1 cells by treatments of DG, CLA, and DG-CLA was reduced in a dose-dependent manner. CLA among them was the most effective in reduction of viable cells with increasing concentrations. Treatments of the DG, CLA, and DG-CLA at the concentration of $100{\cdot}\ddot{I}g/ml$ for 48h significantly inhibited differentiation of 3T3-L1 cells (p<0.05). In addition. cytoplasmic lipid accumulation during differentiation of the 3T3-L1 preadipocytes was also inhibited by treatments of the test solutions. DG-CLA was the most effective in the inhibition of differentiation and lipid accumulation in 3T3-L1 cells. These results indicate that the DG including CLA as fatty acids is more effective for anti-obesity than DG or CLA alone and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

Thaumatin Isolated from Katemfe Fruit of Thaumatococcus daiellii Inhibits 3T3 L1 Adipocytes Differenciation (Thaumatococcus daiellii 열매 유래 토마틴의 3T3-L1 지방전구세포 분화 억제에 의한 항비만 효과)

  • Cha, Jae-Young;Jeong, Jae-Jun;Yang, Hyun-Ju;Park, Jun-Seok;Kim, Hyun-Woo;Kim, Su-Hyun;Jung, Hae-Jung
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.783-787
    • /
    • 2011
  • The effects of thaumatin isolated from katemfe fruit of Thaumatococcus daiellii Benth on 3T3-L1 preadipocyte differentiation was investigated in vitro. 3T3-L1 adipocytes were treated with various concentrations of thaumatin ranging in 0-5 ${\mu}M$. Thaumatin reduced fat accumulation in differentiated 3T3-L1 adipocytes in a dose-dependent manner. 3T3-L1 cell proliferation was 97.0 and 88.3% at 1 and 3 ${\mu}M$ after 8 days of thaumatin treatment, respectively. Thaumatin showed a potent inhibitory effect on stained lipid droplets at a concentration of 3 ${\mu}M$. Thaumatin reduced triglyceride accumulation in differentiated 3T3-L1 cells in a dose-dependent manner, compared with positive control cells. This study provides basic information on the anti-obesity activity of thaumatin.