DOI QR코드

DOI QR Code

Effects of Fragaria Orientalis Water extract on Adipogenesis and Cell Differentiation in 3T3-L1 Cells

3T3-L1 지방 전구세포의 분화 및 지방 생성에 미치는 Fragaria Orientalis L. 물 추출물의 영향

  • Moon-Yeol Choi (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Mi Hyung Kim (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University) ;
  • Mi Ryeo Kim (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Haany University)
  • 최문열 (대구한의대 한의과대학 본초약리학교실) ;
  • 김미형 (대구한의대 한의과대학 본초약리학교실) ;
  • 김미려 (대구한의대 한의과대학 본초약리학교실)
  • Received : 2024.04.17
  • Accepted : 2024.05.25
  • Published : 2024.05.30

Abstract

Objective : Obesity, which has recently been rapidly increasing in the obese population, is caused by an imbalance in energy intake and consumption. The reason why we need to manage obesity well is that the prevalence of complications such as diabetes, atherosclerosis, insulin resistance, and cardiovascular disease increases. In this study, the effect of FO (Fragaria orientalis) water extract on fat metabolism in 3T3-L1 cells was observed to develop a new anti-obesity material based on Mongolian medical books. Methods : The effect of FO extract on adipogenesis in 3T3-L1 cells was observed using DPPH scavenging, pancreatic lipase inhibitory activity, MTT analysis and Oil-red-O staining method. And the expression of proteins related to lipid metabolism was analyzed by Western blot. Results : The FO group significantly increased the DPPH radical scavenging activity at 5 mg/ml compared to the positive control BHA at 0.1 mg/ml. In oil red O staining at a safe concentration without cytotoxicity, lipid accumulation was significantly inhibited by less than 80% compared to the control group at all concentrations. Moreover, treatment of FO significantly increased the expression of proteins related to lipid metabolism, such as p-AMPK and p-ACC, in 3T3-L1 cells, and the expression of CPT-1 tended to increase in a dose-dependent manner. However, the expression of PPAR-γ was significantly decreased in a dose-dependent manner. Conclusion : These results suggest that FO water extract has a potential anti-obesity effect and are expected to be utilized in the development of materials for obesity prevention and treatment.

Keywords

References

  1. Abbas MA, Boby N, Lee EB, Hong JH, Park SC. Anti-obesity effects of Ecklonia cava extract in high-fat diet-induced obese rats. Antioxidant. 11:310, 2022. https://doi.org/10.3390/antiox11020310
  2. Clemmensen C, Petersen MB, Sorensen TIA. Will the COVID-19 pandemic worsen the obesity epidemic?. Nat Rev Endocrinol. 16:469-470, 2020. https://doi.org/10.1038/s41574-020-0387-z
  3. Kai Y, Gao JT, Liu H, Wang YB, Tian CR, Guo S, He L, Li M, Tian ZW, Song XF. Effects of IL-33 on 3T3-L1 cells and obese mice models induced by a high-fat diet. Int Immunopharmacol. 101:108209, 2021. https://doi:10.1016/j.intimp.2021.108209
  4. Blakemore AIF, Froguel P. Is obesity our genetic legacy?. J. Clin Endocrinol Metab. 93(11):51-56, 2008. https://doi.org/10.1210/jc.2008-1676
  5. Thaker VV. Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev. 28(2):379-405, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1116
  6. Han HS, Chung KS, Shin YK, Lee SH, Lee KT. Standardized Hydrangea serrata (Thunb.) Ser. extract ameliorates obesity in db/db Mice. Nutrients. 13:3624, 2021. https://doi.org/10.3390/nu13103624
  7. World Health Organization; International Obesity Task Force. The Asian-Pacific Perspective: Redefining Obesity and Its Treatment. Geneva: WHO Western Pacific Region, 2000.
  8. Korean Endocrine Society; Korean Society for the Study of Obesity. Management of obesity, 2010 recommendation. Endocrinol Metab 2010;25:301-304.
  9. Oh SW, Shin SA, Yun YH, Yoo T, Huh BY. Cut-off point of BMI and obesity-related comorbidities and mortality in middle-aged Koreans. Obes Res 12:2031-2040, 2004.
  10. National Task Force on the Prevention and Treatment of Obesity: Long-term pharmacotherapy in the management of obesity. JAMA 276:1907-1915, 1996
  11. Clinical practice guidelines committee. Clinical practice guidelines for obesity 2022. Korean Society for the study of obesity. 2022.
  12. WHO Western Pacific Region, International Association for the Study of Obesity, International Obesity Task Force: The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. pp. 15-21, Sydney, Australia, Health Communications Australia, 2000.
  13. Hensrud DD: Pharmacotherapy for obesity. Med Clin North Am 84:463-476, 2000. https://doi:10.1111/j.1365-2125.2009.03453
  14. Padwal RS, Majumdar SR: Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369:71 -77, 2007 https://doi.org/10.1016/S0140-6736(07)60033-6
  15. Ozge TC, Mustafa C, Dimitri PM, Manfredi R. Novel Anti-obesity Therapies and their Different Effects and Safety Profiles: A Critical Overview. Diabetes Metab Syndr Obes. 16:1767-1774, 2023.
  16. Zhang Y, Zhang Q, Sammul M. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis. PLOS ONE. 7(9), 2012. https://doi.org/10.1371/journal.pone.0044221
  17. Han Y, Wu HB, Liu Y. The complete chloroplast genome sequence of Fragaria orientalis (Rosales: Rosaceae). Mitochondrial DNA Part B : Resources. 3(1):127-128, 2018. https://doi.org/10.1080/23802359.2018.1424578
  18. Blois MS. Antioxidant determination by the use of stable free radical. Nature. 1958 ; 191 : 1199-1200.
  19. Ahmad NN, Robison S, Martin TK, Poon JL, Kan H. Clinical outcomes associated with anti-obesity medications in real-world practice: a systematic literature review. Obesity Rev. 22: 2021. https://doi.org/10.1111/obr.13326
  20. GBD 2015 obesity collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Eng J Med. 377:13-27, 2017. https://DOI:10.1056/NEJMoa1614362
  21. Wu Y, Tan F, Zhang TY, Xie BL, Ran LX, Zhao X. The anti-obesity effects of lotus leaves on highfat-diet-induced obesity by modulating lipid metabolism in C57BL/6J mice. Appl Biol Chem. 63:61, 2020. https://doi.org/10.1186/s13765-020-00541-x
  22. Papamargaritis D, Carel WR, Jens JH, Melanie JD. New therapies for obesity. Cardiovas Res. 119: 2825-2842, 2023. https://doi.org/10.1093/cvr/cvac176
  23. Zhang J, Wang D, Wu Y, Li W, Hu Y, Zhao G, Fu C, Fu S, Zou L. Lipid-polymer hybrid nanoparticles for oral delivery of Tartary buck-wheat flavonoids. J Agric Food Chem. 66(19):4923-4932, 2018. https://doi.org/10.1021/acs.jafc.8b00714
  24. Utami S, Endrini S, Nafik S, Lestari IMT, Anindya D, Bakar EA, Rozy F, Said FF, Afifah E, Arumwardana S, Nufus H, Rihibiha DD, Kusuma HSW, Wibowo SHB, Widowati W. In vivo antioxidant and anti-obesity activities of freeze-dried Canariumsp. Averrhoa bilimbi L. and Malus domestica. Indones Biomed. J. 11(3):320-326, 2019. https://doi:10.18585/inabj.v11i3.728
  25. Lim HJ, Lee HJ, Lim MH. Antioxidant activity of acaiberry, blueberry, corni, and mulberry. Kor J Aesthet Cosmetol. 13(3):445-452, 2015.
  26. Kang SN, Lee SH, Shim YN, Oh MJ, Lee NR, Park SM. Antioxidant capacity of anthocyanin-rich fruits and vegetables and changes of quality characteristics of black carrot added pudding according to storage. J Appl Biol Chem. 59(4), 273-280, 2016. http://dx.doi.org/10.3839/jabc.2016.047
  27. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat dietinduced obese mice mediated by AMPK. Nutrients. 10:830, 2018. https://doi.org/10.3390/nu10070830
  28. Li Q, Lai X, Sun L, Cao J, Ling C, Zhang W, Xiang L, Chen R, Li D, Sun S. Antiobesity and antiinflammation effects of hakka stir-fried tea of different storage years on high-fat diet-induced obese mice model via activating the AMPK/ACC/CPT1 pathway. J Food Nutr Res. 64:1681, 2020. https://doi:10.29219/fnr.v64.1681
  29. Li S, He N, Wang L. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice. Mar Drugs. 17:540, 2019. https://doi.org/10.3390/md17090540
  30. Yang SH, Ahn EK, Lee JA, Shin TS, Tsukamoto C, Suh JW, Mei I, Chung G. Soyasaponins Aa and Ab exert an anti-obesity effects in 3T3-L1 adipocytes through downregulation of PPARγ. Phytother Res. 29:281-287, 2015. https://doi.org/10.1002/ptr.5252
  31. Tsai SC, Huang YW, Wu CC, Wang JJ, Chen YT, Singhania RR, Chen CW, Dong CD, Hsieh SL. Anti-obesity effects of Nostoc commune ethanol extract In Vitro and In Vivo. Nutrients. 14:968, 2022. https://doi.org/10.3390/nu14050968