DOI QR코드

DOI QR Code

The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells

  • Received : 2020.08.29
  • Accepted : 2020.09.16
  • Published : 2020.09.30

Abstract

[Purpose] In vivo studies have demonstrated the ergogenic benefits of eleutherococcus senticosus (ES) supplementation. ES has been observed to enhance endurance capacity, improve cardiovascular function, and alter metabolic functions (e.g., increased fat utilization); however, the exact mechanisms involved remain unknown. We aimed to determine whether ES could effectively induce fat loss and improve muscle metabolic profiles through increases in lipolysis- and lipid metabolism-associated protein expression in 3T3-L1 adipocytes and C2C12 skeletal muscle cells, respectively, to uncover the direct effects of ES on adipocytes and skeletal muscle cells. [Methods] Different doses of ES extracts (0.2, 0.5, and 1.0 mg/mL) were added to cells (0.2 ES, 0.5 ES, and 1.0 ES, respectively) for 72 h and compared to the vehicle control (control). [Results] The intracellular triacylglycerol (TG) content significantly decreased (p < 0.05 for 0.2 ES, p < 0.01 for 0.5 ES and 1.0 ES) in 3T3-L1 cells. Adipose triglyceride lipase, which is involved in active lipolysis, was significantly higher in the 1.0 ES group than in the control group (p < 0.01) of 3T3-L1 adipocytes. In C2C12 cells, the mitochondrial protein voltage-dependent anion channel (VDAC) was significantly increased in the 1.0 ES group (p < 0.01). Furthermore, we found that 1.0 ES activated both 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in skeletal muscle cells (p < 0.01). [Conclusion] These findings suggest that ES extracts decreased TG content, presumably by increasing lipase in adipocytes and metabolism-associated protein expression as well as mitochondrial biogenesis in muscle cells. These effects may corroborate previous in vivo findings regarding the ergogenic effects of ES supplementation.

Keywords

Acknowledgement

This study was supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (#26702029 and #15KK0358 to TH) and funding from Bizen Chemical Co., Ltd.

References

  1. Goulet, E. D., Dionne, I. J. Assessment of the effects of eleutherococcus senticosus on endurance performance. Int J Sport Nutr Exerc Metab. 2005,15:75-83. https://doi.org/10.1123/ijsnem.15.1.75
  2. Hurley, B. F., Nemeth, P. M., Martin, W. H., 3rd, Hagberg, J. M., Dalsky, G. P., Holloszy, J. O. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol. (1985). 1986,60:562-7. https://doi.org/10.1152/jappl.1986.60.2.562
  3. Hawley, J. A. Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc. 2002,34:1485-91. https://doi.org/10.1097/00005768-200209000-00014
  4. Hawley, J. A., Brouns, F., Jeukendrup, A. Strategies to enhance fat utilisation during exercise. Sports Med. 1998,25:241-57. https://doi.org/10.2165/00007256-199825040-00003
  5. Kuo, J., Chen, K. W., Cheng, I. S., Tsai, P. H., Lu, Y. J., Lee, N. Y. The effect of eight weeks of supplementation with eleutherococcus senticosus on endurance capacity and metabolism in human. Chin J Physiol. 2010,53:105-11. https://doi.org/10.4077/CJP.2010.AMK018
  6. Hashimoto, T., Sato, K., Iemitsu, M. Exercise-inducible factors to activate lipolysis in adipocytes. J Appl Physiol. (1985). 2013,115(2):260-67. https://doi.org/10.1152/japplphysiol.00427.2013
  7. Kim, J., Park, J., Lim, K. Nutrition supplements to stimulate lipolysis: a review in relation to endurance exercise capacity. J Nutr Sci Vitaminol (Tokyo). 2016,62:141-61. https://doi.org/10.3177/jnsv.62.141
  8. Sumiyoshi, M., Kimura, Y. Effects of eleutherococcus senticosus cortex on recovery from the forced swimming test and fatty acid beta-oxidation in the liver and skeletal muscle of mice. Nat Prod J. 2016,6:49-55.
  9. Hwang, H., Kim, J., Park, J., Yun, H., Cheon, W., Kim, B., Lee, C., Suh, H., Lim, K. Red ginseng treatment for two weeks promotes fat metabolism during exercise in mice. Nutrients. 2014,6:1874-85. https://doi.org/10.3390/nu6051874
  10. Han, Y. H., Li, Z., Um, J. Y., Liu, X. Q., Hong, S. H. Anti-adipogenic effect of glycoside St-E2 and glycoside St-C1 isolated from the leaves of acanthopanax henryi (oliv.) harms in 3T3-L1 cells. Biosci Biotechnol Biochem. 2016,80:2391-400. https://doi.org/10.1080/09168451.2016.1217150
  11. Hashimoto, T., Endo, Y. Cyclic restricted feeding enhances lipid storage in 3 T3-L1 adipocytes. Lipids Health Dis. 2013,12:76. https://doi.org/10.1186/1476-511X-12-76
  12. Hashimoto, T., Segawa, H., Okuno, M., Kano, H., Hamaguchi, H. O., Haraguchi, T., Hiraoka, Y., Hasui, S., Yamaguchi, T., Hirose, F., Osumi, T. Active involvement of micro-lipid droplets and lipid droplet-associated proteins in hormonestimulated lipolysis in adipocytes. J Cell Sci. 2012.
  13. Yoshikawa, M., Hosokawa, M., Miyashita, K., Fujita, T., Nishino, H., Hashimoto, T. Fucoxanthinol attenuates oxidative stress-induced atrophy and loss in myotubes and reduces the triacylglycerol content in mature adipocytes. Mol Biol Rep. 2020,47:2703-11. https://doi.org/10.1007/s11033-020-05369-8
  14. Oishi, Y., Tsukamoto, H., Yokokawa, T., Hirotsu, K., Shimazu, M., Uchida, K., Tomi, H., Higashida, K., Iwanaka, N., Hashimoto, T. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (1985). 2015,118:742-9. https://doi.org/10.1152/japplphysiol.00054.2014
  15. Sakushima, K., Yoshikawa, M., Osaki, T., Miyamoto, N., Hashimoto, T. Moderate hypoxia promotes skeletal muscle cell growth and hypertrophy in C2C12 cells. Biochem Biophys Res Commun. 2020,525:921-7. https://doi.org/10.1016/j.bbrc.2020.02.152
  16. Hashimoto, T., Yokokawa, T., Narusawa, R., Okada, Y., Kawaguchi, R., Higashida, K. A lactate-based compound containing caffeine in addition to voluntary running exercise decreases subcutaneous fat mass and improves glucose metabolism in obese rats. J Funct Foods. 2019,56:84-91. https://doi.org/10.1016/j.jff.2019.03.007
  17. Wakil, S. J., Abu-Elheiga, L. A. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009,50 Suppl:S138-43. https://doi.org/10.1194/jlr.R800079-JLR200
  18. Hashimoto, T., Hussien, R., Cho, H. S., Kaufer, D., Brooks, G. A. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PloS one. 2008,3:e2915. https://doi.org/10.1371/journal.pone.0002915
  19. Hargreaves, M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports. 2015,25 Suppl 4:29-33. https://doi.org/10.1111/sms.12607
  20. McGee, S. L., van Denderen, B. J., Howlett, K. F., Mollica, J., Schertzer, J. D., Kemp, B. E., Hargreaves, M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008,57:860-7. https://doi.org/10.2337/db07-0843
  21. Richter, E. A., Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013,93:993-1017. https://doi.org/10.1152/physrev.00038.2012
  22. Viollet, B., Andreelli, F. AMP-activated protein kinase and metabolic control. Handb Exp Pharmacol. 2011:303-30. https://doi.org/10.1007/978-3-642-17214-4_13
  23. Misra, P. AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin Ther Targets. 2008,12:91-100. https://doi.org/10.1517/14728222.12.1.91
  24. Narkar, V. A., Downes, M., Yu, R. T., Embler, E., Wang, Y. X., Banayo, E., Mihaylova, M. M., Nelson, M. C., Zou, Y., Juguilon, H., Kang, H., Shaw, R. J., Evans, R. M. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008,134:405-15. https://doi.org/10.1016/j.cell.2008.06.051
  25. Bhatti, J. S., Bhatti, G. K., Reddy, P. H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochimica et biophysica acta. Mol Basis Dis. 2017,1863:1066-77. https://doi.org/10.1016/j.bbadis.2016.11.010
  26. Hood, D. A., Memme, J. M., Oliveira, A. N., Triolo, M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2019,81:19-41. https://doi.org/10.1146/annurev-physiol-020518-114310
  27. Menshikova, E. V., Ritov, V. B., Fairfull, L., Ferrell, R. E., Kelley, D. E., Goodpaster, B. H. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006,61:534-40. https://doi.org/10.1093/gerona/61.6.534