DOI QR코드

DOI QR Code

Inhibitory Effects of 14 Plants from Mongolia and Myanmar on Lipid Accumulation in 3T3-L1 and HepG2 Cells

몽골과 미얀마 식물 14종의 3T3-L1 및 HepG2 세포에서 지질 축적 억제효과

  • Kim, SukJin (Department of Bio-Health Convergence Major, Duksung Women's University) ;
  • Kim, Gun-Hee (Department of Bio-Health Convergence Major, Duksung Women's University)
  • 김숙진 (덕성여자대학교 바이오헬스융합학과) ;
  • 김건희 (덕성여자대학교 바이오헬스융합학과)
  • Received : 2021.01.21
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

This study examined the antioxidative and lipid accumulation inhibitory effects of 14 plants from Mongolia and Myanmar on 3T3-L1 and HepG2 cells. The total phenolic and flavonoid contents (TPC and TFC) of 14 plant extracts were measured, and the antioxidative activities were analyzed using DPPH, ABTS, FRAP, and ORAC. After measuring the pancreatic lipase levels and performing the thiobarbituric acid assay, the degree of lipid accumulation was determined by lipid (Oil Red O) staining and triglyceride assay in 3T3-L1 and HepG2 cells. M. paniculate (259.43 mgGAE/g) and C. benghalensis (130.78 mgNAE/g) had the highest TPC and TFC, respectively, among the 14 plants. R. acicularis Lindl. had the highest antioxidant activity in DPPH. The ABTS, FRAP, and ORAC results showed that the antioxidant activity of 11 species was higher than that of the positive control. The pancreatic lipase inhibitory effect of C. angustifolium Scop. was reduced to 23.65% at 0.1 mg/mL, and the level of lipid peroxidation of C. abrorescens Lam. was 0.63 nmol/mg. Five selected plants inhibited the lipid accumulation and triglyceride content, respectively, in 3T3-L1 and HepG2 cells. These results provide scientific evidence for developing functional foods using 14 plants from Mongolia and Myanmar, which have antioxidant activities and lipid accumulation reduction effects.

Keywords

Acknowledgement

본 연구는 해외생물소재센터(IBMRC; International Biological Material Research Center, Daejeon, Korea)로부터 식물 추출물을 분양 받아 수행되었으며, 이에 감사드립니다.

References

  1. Abenavoli L, Milic N, Luzza F, Boccuto L, Lorenzo A. 2017. Polyphenols Treatment in Patients with Nonalcoholic Fatty Liver Disease. J Transl. Int. Med., 5(3):144-147 https://doi.org/10.1515/jtim-2017-0027
  2. Agnieszka G, Mariola D, Anna P, Piotr K, Natalia W, Aneta S, Marcin O, Bogna O, Zdzislaw L, Aurelia P, Magdalena M, Lukasz MP, Karolina W. 2018. Qualitative and quantitative analyses of bioactive compounds from ex vitro Chamaenerion angustifolium (L.) (Epilobium augustifolium) herb in different harvest times. IND. CROP. PROD., 123:208-220 https://doi.org/10.1016/j.indcrop.2018.06.010
  3. Ahn EM, Kang HJ, Kim Y, Choe YS, Kang MS. 2015. Effects of ethanol extracts from commonly consumed vegetables in Korea on differentiation and secretion of MCP-1 and adiponectin in 3T3-L1 adipocytes and lipid accumulation in HepG2 hepatocytes. J. East Asian Soc. Dietary Life 25(1): 99-110 https://doi.org/10.17495/easdl.2015.2.25.1.99
  4. Amalina N, Bakar MFA, Bakar FIA, Rahim AC, Murdin N. 2019. Underutilized Mangifera species (Mangifera caesia, Mangifera quadrifida and Mangifera odorata) from Borneo: a potential source of antioxidant. J. Eng. Appl., 14(4):1169-1177 https://doi.org/10.36478/jeasci.2019.1169.1177
  5. Apovian CM. 2016. Obesity: definition, comorbidities, causes, and burden. Am. J. Manag. Care, 22(7):s176-s185
  6. Balachander GJ, Subramanianb S, langoK. 2018. Rosmarinic acid attenuates hepatic steatosis by modulating ER stress and autophagy in oleic acid-induced HepG2 cells. RSC. Adv., 8:26656-26663 https://doi.org/10.1039/C8RA02849D
  7. Benedict M, Zhang X. 2017. Non-alcoholic fatty liver disease: an expanded review. World J. Hepatol., 9(16):715-732 https://doi.org/10.4254/wjh.v9.i16.715
  8. Biernasiuk A, Wozniak M, Bogucka-Kocka A. 2015. Determination of free and bounded phenolic acids in the rhizomes and herb of Sanguisorba officinalis L. Curr. Issues Pharm. Med.. Sci., 28(4):254-256 https://doi.org/10.1515/cipms-2015-0083
  9. Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91(2):179-19 https://doi.org/10.1093/aob/mcf118
  10. Boccellino M, D'Angelo S. 2020. Anti-obesity effects of polyphenol intake:current status and future possibilities. Int. J. Mol. Sci., 21:5642 https://doi.org/10.3390/ijms21165642
  11. Breitenbach M, Eckl P. 2015. Introduction to oxidative stress in biomedical and biological research. Biomolecules, 5(2): 1169-1177 https://doi.org/10.3390/biom5021169
  12. Buchholz T, Melzig MF. 2015. Polyphenolic compounds as pancreatic lipase inhibitors. Planta. Med., 81(10):771-783 https://doi.org/10.1055/s-0035-1546173
  13. Choi SE, Lee WK, Yu HN, Kang HD, Kim YS. 2014. Analysis of Relationship between Land Cover Change and Vegetation Temperature Condition Index in Central Dry Zone of Myanmar. Korean Assoc. Geogr. Inf. Stud., 17(2):82-94
  14. D'Angiolillo F, Mammano MM, Fascella G. 2018. Pigments, polyphenols and antioxidant activity of leaf extracts from four wild rose species grown in Sicil. Not. Bot. Horti. Agrobo., 46(2): 402-409 https://doi.org/10.15835/nbha46211061
  15. DeFilipps RA, Krupnick GA. 2018. The medicinal plants of Myanmar. PhytoKeys. PhytoKeys, 102:1-341 https://doi.org/10.3897/phytokeys.102.24380
  16. Dissanayake1 DP, Abeytunga1 DTU, Vasudewa1 NS, Ratnasooriya WD. 2009. Inhibition of lipid peroxidation by extracts of Pleurotus ostreatus. Pharmacogn. Mag., 5(19):266-271
  17. Gurnani N, Gupta M, Mehta D, Mehta BK. 2018. Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). J. Taibah Univ. Med. Sci., 10:462-470 https://doi.org/10.1016/j.jtusci.2015.06.011
  18. GutiErrez-Grijalva EP, Ambriz-Pere DL, Leyva-Lopez N, Castillo-Lopez RI, Heiedia JB. 2016. Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch. Latinoam. Nutr., 66(2):87-100
  19. Jeon YS, Jo BS, Park HJ, Kang SA, Cho YJ. 2012. Screening of biological activity of Caragana sinica extracts. J. Korean Soc. Food Sci. Nutr., 41(9):1211-1219 https://doi.org/10.3746/JKFN.2012.41.9.1211
  20. Kang SK. 2012. Climatic and socio-ecological considerations on yellow dust and desertification in dryland regions of the northeast Asia. Korea J. Nat. Conserv., 6(1):1-8
  21. Karadag A, Ozcelik B, Saner S. 2009. Review of methods to determine antioxidant capacities. Food Anal. Methods, 2(1):41-60 https://doi.org/10.1007/s12161-008-9067-7
  22. Kawano Y, Cohen DE. 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol., 48(4):434-441 https://doi.org/10.1007/s00535-013-0758-5
  23. Kim SJ, Kim GH. 2020. Plants from Ulleung island ameliorate lipid accumulation and oxidative stress in oleic acid-induced in HepG2 Cells. Korean Soc. Food Cult.,27(6):817-828
  24. Kraus NA, Ehebauer F, Zapp B, Rudolphi B, Kraus BJ, Kraus D. 2016. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte, 5(4):351-358 https://doi.org/10.1080/21623945.2016.1240137
  25. Kumar P, Sharma S, Khanna M, Raj HG. 2003. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection. Int. J. Exp. Pathol, 84(3):127-133 https://doi.org/10.1046/j.1365-2613.2003.00344.x
  26. Lewis WH. 1959. A monograph of the genus Rosa in North America. I. R. acicularis. Brittonia, 11:1-24 https://doi.org/10.2307/2805073
  27. Li R, Jia Z, Trush MA. 2016. Defining ROS in biology and medicine. React Oxyg. Species (Apex), 1(1): 9-21
  28. Lim SM, Goh YM, Kuan WB, Loh SP. 2014. Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. Lipids Health Dis., 13(169):1-9
  29. Liu TT, Liu XT, Chen QX, Shi Y. 2020. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother., 128(110314):1-9
  30. Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. 2016. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci. Rep., 6(28591):1-18 https://doi.org/10.1038/s41598-016-0001-8
  31. Madrigal-Carballo S, Rodriguez G, Krueger CG, Dreher M, Reed JD. 2009. Pomegranate (Punica granatum) supplements: Authenticity. J. Funct. Foods, 1(3):324-329 https://doi.org/10.1016/j.jff.2009.02.005
  32. Marjani A. 2015. A review on the role of triglyceride in metabolic syndrome. Asian J. Pharm. Clin. Res., 8(3):1-3
  33. McMurray F, Patten DA, Harper ME. 2016. Reactive oxygen species and oxidative stress in obesity- recent findings and empirical approaches. Obesity, 24(11):2301-2310 https://doi.org/10.1002/oby.21654
  34. Meghwal PR, Singh A, Kumar P, Morwal BR. 2014. Diversity, distribution and horticultural potential of Cordia myxa L.: a promising underutilized fruit species of arid and semi arid regions of India. Genet. Resour. Crop. Evol., 61:1633-1643 https://doi.org/10.1007/s10722-014-0161-y
  35. Melo PEF, Silva APM, Marques FP, Ribeiro PRV, Souza Filho MDSM, Brito ES, Lima JR, Azeredo HMC. 2019. Antioxidant films from mango kernel components. Food Hydrocoll., 95:487-495 https://doi.org/10.1016/j.foodhyd.2019.04.061
  36. Morales M, Giraldo SZ, Jaimes T, Delgado SR, Arbelaez AFA, Maldonado ME, Zamorano P, Rojano B. 2017. Mangiferin content, carotenoids, tannins and oxygen radical absorbance capacity (ORAC) values of six mango (Mangifera indica) cultivars from the Colombian Caribbean. J. Med. Plant Res., 11(7):144-152 https://doi.org/10.5897/JMPR2017.6335
  37. Morita M, Ishida N, Uchiyama K, Yamaguchi K, Itoh Y, Shichiri M, Yoshida Y, Hagihara Y, Naito Y, Yoshikawa T, Niki E. 2012. Fatty liver induced by free radicals and lipid peroxidation. Free Radic. Res., 46(6):758-765 https://doi.org/10.3109/10715762.2012.677840
  38. Niki E, Yoshida Y, Saito Y, Noguchi N. 2005. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun., 338(1):668-76 https://doi.org/10.1016/j.bbrc.2005.08.072
  39. Odontuya G. 2016. Anti-oxidative, acetylcholinesterase and pancreatic lipase inhibitory activities of compounds from Dasiphora fruticosa, Myricaria alopecuroides and Sedum hybridum. Mong. J. Chem., 17(43)42-49 https://doi.org/10.5564/mjc.v17i43.746
  40. Okuno Y, Fukuhara A, Hashimoto E, Kobayashi H, Kobayashi S, Otsuki M, Shimomura L. 2018. Oxidative stress inhibits healthy adipose expansion through suppression of SREBF-1-mediated lipogenic pathway. Diabetes, 67(6): 1113-1127. https://doi.org/10.2337/db17-1032
  41. Ollanketo M, Peltoketo A, Hartonen K, Hiltunen R. Riekkola ML. 2002. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. Eur. Food Res. Technol., 215:158-163 https://doi.org/10.1007/s00217-002-0545-7
  42. Park JY, Kim CS, Park KM, Chang PS. 2019. Inhibitory characteristics of flavonol-3-O-glycosides from Polygonum aviculare L. (common knotgrass) against porcine pancreatic lipase. Sci. Rep., 9(18080):1-10 https://doi.org/10.1038/s41598-018-37186-2
  43. Pavel S, Klejdus B, Kuban V. 2006. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J. Agr. Food Chem., 54(3):607-16 https://doi.org/10.1021/jf052334j
  44. Poli G, Albano E, Dianzani MU. 1987. The role of lipid peroxidation in liver damage. Chem. Phys. Lipids, 45(204):117-42 https://doi.org/10.1016/0009-3084(87)90063-6
  45. Shah P, Modi HA. 2015. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. Int. j. res., 3(4):2321-9653
  46. Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. 2019. Role of natural phenolics in hepatoprotection: a mechanistic review and analysis of regulatory network of associated genes. Front. Pharmacol., 10(509):1-25 https://doi.org/10.3389/fphar.2019.00001
  47. Sorokina M, Steinbeck C. 2020. Review on natural products databases: where to find data in 2020. J Cheminform, 12(20):1-51 https://doi.org/10.1186/s13321-019-0407-y
  48. Sternberg T, Tsolmon R, Middleton NM, Thomas DSG. 2011. Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int. J. Digit. Earth, 4(1):50-64 https://doi.org/10.1080/17538940903506006
  49. Tomczyk M., Paduch R., Wiater A., Pleszczynska M., Kandefer-Szerszen M., Szczodrak J. 2013. The influence of aqueous extracts of selected Potentilla species on normal human colon cells. Acta. Pol. Pharm., 70(3):523-531.
  50. Truong D.H., Nguyen D.H., Ta N.T.A., Bui A.V., Do T.H., Nguyen, H.C. 2019. Evaluation of the Use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food. Qual., 2019:1-9.
  51. Um ES, Kim YS. 2016. Effect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on palmitate-induced lipogenesis in HepG2 cells. Korean J. Orient. Med. Prescr., 37(1): 62-76
  52. Urgamal M, Baasansuren E, Tovuudorj ME, Shijirbaatar O, Chinbaatar Z, Lkhagvadorj K, Kwon OS. 2018. Medicinal plant diversity in the southern and eastern Gobi Desert region, Mongolia. J. Eco. Env., 42(4):1-13 https://doi.org/10.1186/s41610-017-0061-0
  53. Wadje SD, Wankhede BG, Mali MR. 2019. Phytochemical and in vitro antioxidant activity of Careya arborea Roxb. leaves successive extracts. J. drug. deliv. Ther., 9(2-S):53-56
  54. Wahyono A, Dewi AC, Yudiastuti SON, Jamilah S, Kang WW. 2020. Antioxidant activity and total phenolic contents of bread enriched with pumpkin flour. IOP Conf. Ser. Earth Environ. Sci., 411:012049 https://doi.org/10.1088/1755-1315/411/1/012049
  55. Walker JM. 1994. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol., 32:5-8
  56. Wang H, Eckel RH. 2009. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab., 297: E271-E288 https://doi.org/10.1152/ajpendo.90920.2008
  57. Wang T, Takikawa Y, Tabuchi T, Satoh T, Kosaka K, Suzuki K. 2012. Carnosic acid (CA) prevents lipid accumulation in hepatocytes through the EGFR/MAPK pathway. J. Gastroenterol., 47(7):805-813 https://doi.org/10.1007/s00535-012-0546-7
  58. Werkhoven CHE, Salisbury PJ. 1966. Germination and survival of Colorado spruce, Scots pine, Caragana and Siberian elm at four salinity and two moisture levels. Can. J. Plant Sci., 46(1):1-7 https://doi.org/10.4141/cjps66-001
  59. Williamson G, Kay CD, Crozier A. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. COMPR. REV. FOOD SCI. F., 17(4):1-59 https://doi.org/10.1111/1541-4337.12303
  60. Yang J, Fernandez-Galilea M, Martinez-Fernandez L, Gonzalez-Muniesa P, Perez-Chavez A, Martinez JA, Moreno-Aliaga MJ. 2019. Oxidative stress and non-alcoholic fatty liver disease: effects of omega-3 fatty acid supplementation. Nutrients, 11(4): 872 https://doi.org/10.3390/nu11040872
  61. Young I, Woodside J. 2001. Antioxidants in health and disease. J. Clin. Pathol., 54(3):176-186 https://doi.org/10.1136/jcp.54.3.176