• 제목/요약/키워드: 3D-offset

검색결과 449건 처리시간 0.025초

선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발 (A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System)

  • 김인일;최중효;조학종;서흥원
    • 한국CDE학회논문집
    • /
    • 제10권1호
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Approximate k values using Repulsive Force without Domain Knowledge in k-means

  • Kim, Jung-Jae;Ryu, Minwoo;Cha, Si-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.976-990
    • /
    • 2020
  • The k-means algorithm is widely used in academia and industry due to easy and simple implementation, enabling fast learning for complex datasets. However, k-means struggles to classify datasets without prior knowledge of specific domains. We proposed the repulsive k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, the RK-means enables to classifying of a dataset without domain knowledge. However, three main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for clusters confined in other clusters, which can cause cluster locking; we were unable to prove RK-means provided optimal convergence in the previous study; and RK-means shown better performance only normalize term and weight. Therefore, this paper proposes the advanced RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an initialization strategy for deploying cluster centroids and define a metric for the ARK-means algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. We show ARK-means feasibility experimentally using blob and iris datasets. Experiment results verify the proposed ARK-means algorithm provides better performance than k-means, k'-means, and RK-means.

3D numerical investigation of segmental tunnels performance crossing a dip-slip fault

  • Zaheri, Milad;Ranjbarnia, Masoud;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.351-364
    • /
    • 2020
  • This paper numerically investigates the effects of a dip-slip fault (a normal or a reverse fault) movement on a segmental tunnel which transversely crosses either of this kind of faults. After calibration of the numerical model with results from literature of centrifuge physical tests, a parametric study is conducted to evaluate the effects of various parameters such as the granular soil properties, the fault dip angle, the segments thickness, and their connections stiffnesses on the tunnel performance. The results are presented and discussed in terms of the ground surface and tunnel displacements along the longitudinal axis for each case of faulting. The gradient of displacements and deformations of the tunnel cross section are also analyzed. It is shown that when the fault dip angle becomes greater, the tunnel and ground surface displacements are smaller, in the case of reverse faulting. For this type of fault offset, increasing the tunnel buried depth causes tunnel displacements as well as ground surface settlements to enhance which should be considered in the design.

원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가 (Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape)

  • 조성휘;김홍집;이명희
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

미국인 남성이 발음한 영어 모음의 포먼트 궤적 (Formant Trajectories of English Vowels Produced by American Males)

  • 양병곤
    • 말소리와 음성과학
    • /
    • 제1권3호
    • /
    • pp.65-72
    • /
    • 2009
  • Formant values are the most important acoustic correlates of English vowels. Classical studies on English vowels reported the first three formant values measured at a single timepoint on a sustained vowel segment. However, many recent studies revealed that partial onset or offset segments with information of dynamic spectral changes may contribute to the exact identification of English vowels with an accuracy almost comparable to that by the whole vowel segment or word. The purpose of this study was to examine formant trajectories of nine English vowels collected by Hillenbrand et al.(1995). Acoustic analysis was systematically made by a Praat script at six equidistant timepoints over the vowel segment. Results showed that the first formant trajectories played an important role in distinguishing each vowel within the front- or back-vowel groups. The second formant trajectories of the back vowels varied more drastically than those of the front vowels. The third formant value was similar except the high vowel /i/. From the vowel space on F1 by F2 axes, the formant trajectories of each vowel clearly showed a transition toward the locus of the following consonant /d/. Other acoustic data revealed that there were some vowel inherent duration or pitch values. From this study we can conclude that the dynamic spectral changes are very important in specifying acoustic characteristics of the English vowels. Further studies on vowels and diphthongs in different contexts are desirable.

  • PDF

CFD를 이용한 EPPR 밸브 유동력 특성 분석 및 시뮬레이션 (Simulation of EPPR Valve Flow Force Characteristic using CFD Analysis)

  • 윤주호;윤장원;손호연;김당주;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.14-22
    • /
    • 2017
  • Flow force is the additional unbalanced force acting on the valve spool by fluid flow, excluding the static pressure force that is offset on the spool land wall at the same magnitude. When designing the valve spool, it is assumed that the same average value of static pressure is applied to the inlet and outlet spool land wall in one chamber. However, the high velocity of the fluid flow by the inlet or outlet metering orifice creates unbalanced pressure distribution and generates additional force in the opposite direction to that of the solenoid attraction force. This flow force has a negative effect on the control performance of the EPPR valve, which needs to develop uniform output pressure along the entire spool control range. In this study, we developed a 3D model of the EPPR valve and conducted flow force characteristic analysis using CFD S/W (ANSYS FLUENT). The alleviated flow force model was derived by adjusting the design parameters of the spool notch.

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

  • Xu, Jiaqun;Long, Feng;Cui, Haotian
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.173-178
    • /
    • 2016
  • Six-step commutation control widely used in brushless DC (BLDC) motor can be applied to consequent pole permanent magnet (CPPM) belt starter generator (BSG) with trapezoidal back electromotive force (EMF) in the starter state. However, rotor position detection with three Hall sensors in BLDC motor can hardly be employed in CPPM BSG due to asymmetric flux distribution in each pole side of CPPM BSG. This paper presents a low-cost rotor position detection method for CPPM BSG in which six Hall sensors are proposed to be used based on the analysis of flux distribution by 3D FEA. In the method, the six Hall sensors are divided into three groups and two signals in each group are combined through performing logic operations. In addition, offset angle between back EMF and the related Hall signal can be compensated by moving the Hall sensors. Experiments of a 2 kW CPPM BSG prototype have also been performed to verify the proposed method.

개선된 자동 주파수 보정회로를 이용한 광대역 클록 발생기 설계 (A Wideband Clock Generator Design using Improved Automatic Frequency Calibration Circuit)

  • 정상훈;유남희;조성익
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.451-454
    • /
    • 2011
  • In this paper, a wideband clock generator using novel Automatic frequency calibration(AFC) scheme is proposed. Wideband clock generator using AFC has the advantage of small VCO gain and wide frequency band. The conventional AFC compares whether the feedback frequency is faster or slower then the reference frequency. However, the proposed AFC can detect frequency difference between reference frequency with feedback frequency. So it can be reduced an operation time than conventional methods AFC. Conventional AFC goes to the initial code if the frequency step changed. This AFC, on the other hand, can a prior state code so it can approach a fast operation. In simulation results, the proposed clock generator is designed for DisplayPort using the CMOS ring-VCO. The VCO tuning range is 350MHz, and a VCO frequency is 270MHz. The lock time of clock generator is less then 3us at input reference frequency, 67.5MHz. The phase noise is -109dBC/Hz at 1MHz offset from the center frequency. and power consumption is 10.1mW at 1.8V supply and layout area is $0.384mm^2$.