Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.4.351

3D numerical investigation of segmental tunnels performance crossing a dip-slip fault  

Zaheri, Milad (Department of geotechnical Engineering, Faculty of civil engineering, University of Tabriz)
Ranjbarnia, Masoud (Department of geotechnical Engineering, Faculty of civil engineering, University of Tabriz)
Dias, Daniel (School of Automotive and Transportation Engineering, Hefei University of Technology)
Publication Information
Geomechanics and Engineering / v.23, no.4, 2020 , pp. 351-364 More about this Journal
Abstract
This paper numerically investigates the effects of a dip-slip fault (a normal or a reverse fault) movement on a segmental tunnel which transversely crosses either of this kind of faults. After calibration of the numerical model with results from literature of centrifuge physical tests, a parametric study is conducted to evaluate the effects of various parameters such as the granular soil properties, the fault dip angle, the segments thickness, and their connections stiffnesses on the tunnel performance. The results are presented and discussed in terms of the ground surface and tunnel displacements along the longitudinal axis for each case of faulting. The gradient of displacements and deformations of the tunnel cross section are also analyzed. It is shown that when the fault dip angle becomes greater, the tunnel and ground surface displacements are smaller, in the case of reverse faulting. For this type of fault offset, increasing the tunnel buried depth causes tunnel displacements as well as ground surface settlements to enhance which should be considered in the design.
Keywords
segmental tunnel; normal fault; reverse fault; numerical simulation; soil;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anastasopoulos, I. and Gazetas, G. (2007), "Foundation-structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories", B. Earthq. Eng., 5(3), 277-301. https://doi.org/10.1007/s10518-007-9030-9.   DOI
2 Anastasopoulos, I., Callerio, A., Bransby, M., Davies, M., El Nahas, A., Faccioli, E., Gazetas, G., Masella, A., Paolucci, R. and Pecker, A. (2008), "Numerical analyses of fault-foundation interaction", B. Earthq. Eng., 6(4), 645-675. https://doi.org/10.1007/s10518-008-9078-1.   DOI
3 Atkinson, J. (2007), The Mechanics of Soils and Foundations, CRC Press
4 Baziar, M.H., Nabizadeh, A., Lee, C.J. and Hung, W.Y. (2014), "Centrifuge modeling of interaction between reverse faulting and tunnel", Soil Dyn. Earthq. Eng., 65, 151-164. https://doi.org/10.1016/j.soildyn.2014.04.008.   DOI
5 Baziar, M.H., Nabizadeh, A., Mehrabi, R., Lee, C.J. and Hung, W.Y. (2016), "Evaluation of underground tunnel response to reverse fault rupture using numerical approach", Soil Dyn. Earthq. Eng., 83, 1-17. https://doi.org/10.1016/j.soildyn.2015.11.005.   DOI
6 Bransby, M., Davies, M. and Nahas, A.E. (2008), "Centrifuge modelling of normal fault-foundation interaction", B. Earthq. Eng., 6(4), 585-605. https://doi.org/10.1007/s10518-008-9079-0.   DOI
7 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2013), "2D numerical investigation of segmental tunnel lining behavior", Tunn. Undergr. Sp. Tech., 37, 115-127. https://doi.org/10.1016/j.tust.2013.03.008.   DOI
8 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "2D numerical investigations of twin tunnel interaction", Geomech. Eng., 6(3), 263-275. http://doi.org/10.12989/gae.2014.6.3.263.   DOI
9 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method", Eur. J. Environ. Civ. Eng., 18(4), 489-510. https://doi.org/10.1080/19648189.2013.872583.
10 Gregor, T., Garrod, B. and Young, D. (2007), "Analyses of underground structures crossing an active fault in Coronado, California", Proceedings of the World Tunnel Congress 2007 and the 33rd ITA/AITES Annual General Assembly, Prague, Czech Republic, May.
11 Itasca (2005), Fast Lagrangian Analysis of Continua in 3-Dimension (flac3d v3.1), Itasca Consulting Group.
12 Kiani, M. (2016), "Effects of surface fault rupture on shallow segmental soil tunnels-centrifuge modeling", University of Tabriz, Tabriz, Iran (in Persian).
13 Kiani, M., Akhlaghi, T. and Ghalandarzadeh, A. (2016), "Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults", Tunn. Undergr. Sp. Tech., 51, 108-119. https://doi.org/10.1016/j.tust.2015.10.005.   DOI
14 Lin, M.L., Chung, C.F. and Jeng, F.S. (2006), "Deformation of overburden soil induced by thrust fault slip", Eng. Geol., 88(1-2), 70-89. https://doi.org/10.1016/j.enggeo.2006.08.004.   DOI
15 Lin, M.L., Chung, C.F., Jeng, F.S. and Yao, T.C. (2007), "The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels", Eng. Geol., 92(3-4), 110-132. https://doi.org/10.1016/j.enggeo.2007.03.008.   DOI
16 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "Three-dimensional numerical simulation for mechanized tunnelling in soft ground: The influence of the joint pattern", Acta Geotechnica, 9(4), 673-694. https://doi.org/10.1007/s11440-013-0279-7.   DOI
17 Bransby, M., Davies, M., El Nahas, A. and Nagaoka, S. (2008), "Centrifuge modelling of reverse fault-foundation interaction", B. Earthq. Eng., 6(4), 607-628. https://doi.org/10.1007/s10518-008-9080-7.   DOI
18 Cai, Q.P., Peng, J.M., Ng, C.W.W., Shi, J.W. and Chen, X.X. (2019), "Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand", Comput. Geotech., 111, 137-146. https://doi.org/10.1016/j.compgeo.2019.03.010.   DOI
19 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "2D tunnel numerical investigation: the influence of the simplified excavation method on tunnel behaviour", Geotech. Geol. Eng., 32(1), 43-58. https://doi.org/10.1007/s10706-013-9690-y.   DOI
20 Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground", Tunn. Undergr. Sp. Tech., 42, 40-51. https://doi.org/10.1016/j.tust.2014.02.001.   DOI
21 Do, N.A., Dias, D. and Oreste, P. (2014), "2D seismic numerical analysis of segmental tunnel lining behaviour", B. New Zealand Soc. Earthq. Eng., 47(3), 206-216. https://doi.org/10.5459/bnzsee.47.3.206-216.   DOI
22 Do, N.A., Dias, D. and Oreste, P. (2015), "3D numerical investigation on the interaction between mechanized twin tunnels in soft ground", Environ. Earth Sci., 73(5), 2101-2113. https://doi.org/10.1007/s12665-014-3561-6.   DOI
23 Do, N.A., Dias, D. and Oreste, P. (2018), "Numerical investigation of segmental tunnel linings-comparison between the hyperstatic reaction method and a 3D numerical model", Geomech. Eng., 14(3), 293-299. https://doi.org/10.12989/gae.2018.14.3.293.   DOI
24 Soomro, M.A., Ng, C.W.W., Liu, K. and Memon, N.A. (2017), "Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile", Comput. Geotech., 84, 101-116. https://doi.org/10.1016/j.compgeo.2016.11.011.   DOI
25 Loukidis, D., Bouckovalas, G.D. and Papadimitriou, A.G. (2009), "Analysis of fault rupture propagation through uniform soil cover", Soil Dyn. Earthq. Eng., 29(11-12), 1389-1404. https://doi.org/10.1016/j.soildyn.2009.04.003.   DOI
26 Ng, C.W.W., Soomro, M.A. and Hong, Y. (2014), "Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling", Tunn. Undergr. Sp. Tech., 43, 350-361. https://doi.org/10.1016/j.tust.2014.05.002.   DOI
27 Ranjbarnia, M., Zaheri, M. and Dias, D. (2020), "Three-dimensional finite difference analysis of shallow sprayed concrete tunnels crossing a reverse fault or a normal fault: A parametric study", Front. Struct. Civ. Eng., 14, 998-1011. https://doi.org/10.1007/s11709-020-0621-8.   DOI
28 Wang, Z., Zhang, Z. and Gao, B. (2012), "Seismic behavior of the tunnel across active fault", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
29 Zaheri, M., Ranjbarnia, M. and Oreste, P. (2019), "Performance of systematic fully grouted rockbolts and shotcreted layer in circular tunnel under the hydrostatic conditions using 3D finite difference approach", Geomech. Geoeng., 1-14. https://doi.org/10.1080/17486025.2019.1648885.
30 Zaheri, M., Ranjbarnia, M., Dias, D. and Oreste, P. (2020), "Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting", Transport. Geotech., 23, 100333. https://doi.org/10.1016/j.trgeo.2020.100333.   DOI