• Title/Summary/Keyword: 3D laser scanning

Search Result 338, Processing Time 0.024 seconds

Characteristic Studies on the Stone Cultural Heritage by Shape Reversal Engineerings (석조문화재의 형상역공학적 특성연구)

  • Shon, Ho-Woong;Lee, Kang-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.59-63
    • /
    • 2009
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural heritage. Non-destructive evaluation techniques were applied to protect it from survey: 3D precise laser scanning surveying system was applied to measure the exact size, displacement and declining angles.

  • PDF

Progress Measurement of Structural Frame Construction using Point Cloud Data (포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구)

  • Kim, Ju-Yong;Kim, Sanghee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

Application of Scanning Total Station for Efficiency Enhancement of Tunnel Surveys (터널측량의 효율성 향상을 위한 스캐닝 토털스테이션의 활용)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.242-247
    • /
    • 2017
  • Over- and under-excavation are factors that increase construction cost of tunnels, which makes management essential. Total stations have been used for tunnel surveying because GNSS is difficult to use in tunnels. However, it takes much time to acquire data using total stations. In this study, a total station was integrated with a 3D laser scanner and used for tunnel surveying in Namyangju-si, Gyeonggi-do. The scanning total station reduced the work time compared to the conventional method. Furthermore, reports were effectively generated for overbreak and underbreak for each section and compared with the design. In addition, we could analyze both the cross section and scanned area effectively by using the scanning data. This method can improve the efficiency of tunnel surveying work by combining the advantages of a conventional total station and a 3D laser scanner.

The construction management of tunnel using 3D laser scanner (3차원 레이저 스캐너를 활용한 터널 시공관리)

  • Lee, Kang-Hyun;Heo, In-Wook;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.159-176
    • /
    • 2011
  • A 3D laser scanner is widely used in various fields such as games, movies, medicines, art, design, etc. Many studies for utilizing the 3D laser scanner in the fields of civil engineering have also been carried out, for example, for systematically managing tunnel and/or bridge construction. However, since a software which is directly applicable to Korean construction system does not exist, the amount of data obtained from existing the 3D laser scanner is too much to handle in a systematic way. Therefore, in this paper, a new data processing technique was established which can rapidly and effectively treat the 3D laser scanning data. Moreover, a software that can systematically manage the tunnel construction was developed. The developed software can assess the construction quality of tunnel excavation such as under-break, over-break, cracks, leakage and efflorescence, etc. A 3D laser scanner and the developed software was applied to an in-situ tunnelling site, and verified usefulness of the 3D laser scanner. The developed software may be useful for tunnel maintenance as well as for systematic management of tunnel construction.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

3D Modeling of Both Exterior and Interior of Traditional Architectures by Terrestrial Laser Scanning at Multi-Stations (다중 지점 지상레이저스캐닝에 의한 전통 건축물의 내부와 외부의 3차원 모델링)

  • LEE, Jin-Duk;BHANG, Kon-Joon;Schuhr, Walter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2021
  • The purpose of this research is to present about a series of processes for 3D model generation from scan data of two types of Korean styled architectures, namely, a pavilion and a house, which were acquired with the terrestrial LiDAR and evaluate a 3D surveying method to document digitally the traditional buildings, cultural properties, archeological sites, etc. Since most ancient buildings and cultural assets which require digital documentation by the terrestrial laser scanner usually need to acquire data from multi-directions. Therefore this paper suggested a process of acquiring and integrating data from mult-stations around the object. Also we presented a way for reconstructing automatically at once both the interior and exterior surfaces of buildings from laser scan data.

Development of High Speed Synchronous Control System for Real Time 3D Eye Imaging Equipment (망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • 고종선;김영일;이용재;이태훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

Generation of 3D Design Data using Laser Scanning Data

  • Park, Joon Kyu;Lee, Keun Wang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.343-349
    • /
    • 2021
  • In The process from design to construction in the existing construction work was less efficient due to the contradictory approach of identifying the 3D state in the plan view and the repeated generation of surveys, floor plans, drawings. Accurate 3D design data is essential for smart construction. However, most of the existing related studies have focused on explaining the development method and main functions of equipment or improving the productivity of smart construction. Therefore, in this study, the utility of 3D design model generation for smart construction and construction survey using 3D laser scanner was evaluated. Plane and vertical road alignment were created using the specifications of the road. The generated road alignment was created as a three-dimensional corridor design using cross-sections at intervals of 20m. In addition, it was possible to create a DTM (Digital Terrain Model) using a digital map and effectively create a 3D design model for the study area through overlapping. Construction survey using a 3D laser scanner showed accuracy within 10cm as a result of the accuracy evaluation. These results proved that construction surveying using a 3D laser scanner is possible because it satisfies the acceptable accuracy of the relevant regulations modeling of target areas using 3D design and construction survey using 3D laser scanner can be a way to address shortcomings of existing GNSS (Global Navigation Satellite System) methods. And accurate 3D data will be used as essential data as basic data for smart construction.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

HELIUM3D: A Laser-scanning Head-tracked Autostereoscopic Display

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2010
  • A multi-user autostereoscopic display based on laser scanning is described in this paper. It does not require the wearing of special glasses; it can provide 3D to several viewers who have a large degree of freedom of movement; and it requires the display of only a minimum amount of information. The display operates by providing regions in the viewing field, referred to as "exit pupils," which follow the positions of the viewers' eyes under the control of a multi-user head tracker. The display incorporates an RGB laser illumination source that illuminates a light engine. The light directions are controlled by a spatial light modulator, and a front screen assembly incorporates a novel Gabor superlens. Its operating principle is explained in this paper, as is the construction of three iterations of the display. Finally, a method of developing the display into one that is suitable for television applications is described.