DOI QR코드

DOI QR Code

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves

레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다

  • Kim, Gunzung (Department of Multimedia and Communication Engineering, Yeungnam University) ;
  • Park, Yongwan (Department of Information and Communication Engineering, Yeungnam University)
  • 김건정 (영남대학교 멀티미디어통신공학과) ;
  • 박용완 (영남대학교 정보통신공학과)
  • Received : 2016.06.01
  • Accepted : 2016.06.30
  • Published : 2016.08.25

Abstract

This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

본 논문에서는 DS-OCDMA(direct sequence optical code division multiple access)와 스캐닝 방식의 MEMS (microelectromechanical system) 거울을 이용하여 픽셀별로 스캐닝하는 라이다 시스템(light detection and ranging, LIDAR)의 설계와 시뮬레이션 결과를 기술한다. 제안하는 라이다는 $848{\times}480$ 해상도의 거리 영상을 1초에 60번 측정한다. 영상을 구성하는 각각의 픽셀마다 픽셀 정보와 체크섬을 DS-OCDMA로 부호화한 레이저 펄스로 방출하므로, 반사파를 검출하기 위하여 대기할 필요없이 연속으로 거리 측정이 가능하다. MEMS 거울은 부호화된 레이저 펄스를 반사하여 측정을 원하는 방향으로 보내기 위한 용도로 사용한다. 하나의 거리 영상을 구성하는 픽셀 정보의 처리가 모두 완료되면, 픽셀 개개의 반사파 비행시간을 이용하여 포인트 클라우드를 생성한다.

Keywords

References

  1. H. Choi and B. Song, "Path Planning for Static Obstacle Avoidance: ADAM III," Transactions of KSAE 22, 241-249 (2014). https://doi.org/10.7467/KSAE.2014.22.3.241
  2. S. Kwon, H. Jo, J. Yoon, H. Lee, J. Lee, S. Kwak and H. Choi, "Pattern Recognition using 2D Laser Scanner Shaking," Transactions of KSAE 22, 138-144 (2014). https://doi.org/10.7467/KSAE.2014.22.4.138
  3. M. Kang, S. Hur, I. Park and Y. Park, "Map Building Based on Sensor Fusion for Autonomous Vehicle," Transactions of KSAE 22, 14-22 (2014). https://doi.org/10.7467/KSAE.2014.22.6.014
  4. P. F. McManamon, Field Guide to LIDAR (SPIE Press, Bellingham, 2015).
  5. P. F. McManamon, "Review of LADAR: A Historic, Yet Emerging, Sensor Technology with Rich Phenomenology," Opt. Eng. 51, 060901 (2012). https://doi.org/10.1117/1.OE.51.6.060901
  6. J. Hancock, Ph. D. Thesis, Carnegie Mellon University, Pittsburgh (1999).
  7. R. D. Richmond and S. C. Cain, Direct-detection LADAR Systems (SPIE Press, Bellingham, 2010).
  8. Z. Zhang, Y. Zhao, Y. Zhang, L. Wu and J. Su, "A Real-time Noise Filtering Strategy for Photon Counting 3D Imaging Lidar," Opt. Express 21, 9247-9254 (2013). https://doi.org/10.1364/OE.21.009247
  9. S. A. GuOmundsson, H. Aanæs and R. Larsen, "Environmental Effects on Measurement Uncertainties of Time-of-Flight Cameras," in Proc. Signals, Circuits and Systems (Iasi, Romania, Jul. 2007), pp.1-4.
  10. F. Remondino and D. Stoppa, TOF Range-imaging Cameras (Springer, Heidelberg, 2013).
  11. J. Ho and E.-H. Yang, "Designing Optimal Multiresolution Quantizers with Error Detecting Codes," IEEE Trans. Wireless Commun. 12, 3588-3599 (2013). https://doi.org/10.1109/TWC.2013.062413.122017
  12. P. Koopman and T. Chakravarty, "Cyclic Redundancy Code (CRC) Polynomial Selection For Embedded Networks," in Proc. Dependable Systems and Networks (Florence, Italy, Jun. 2004), pp.145-154.
  13. D. R. Reilly and G. S. Kanter, "High Speed Lidar via GHz Gated Photon Detector and Locked but Unequal Optical Pulse Rates," Opt. Express 22, 15718-15723 (2014). https://doi.org/10.1364/OE.22.015718
  14. C. Goursaud-Brugeaud, A. Julien-Vergonjanne and J.-P. Cances, "Prime Code Efficiency in DS-OCDMA Systems using Parallel Interference Cancellation," Journal of Communications 2,51-57 (2007).
  15. F. R. K. Chung, J. A. Salehi and V. K. Wei, "Optical Orthogonal Codes: Design, Analysis and Applications," IEEE Trans. Inf. Theory 35, 595-604 (1989). https://doi.org/10.1109/18.30982
  16. G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, Norwood, 2002).
  17. W. C. Kwong and G.-C. Yang, Optical Coding Theory with Prime (CRC Press, Boca Raton, 2013).
  18. M. Freeman, M. Champion and S. Madhavan, "Scanned Laser Pico-projectors: Seeing the Big Picture (with a Small Device)," Optics and Photonics News 20, 28-34 (2009).
  19. S. Choi, J. Shin, S. Kang, J. Hong and Y. Kwon, "3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation," Korean J. Opt. Photon. 24, 176-183 (2013). https://doi.org/10.3807/KJOP.2013.24.4.176
  20. J. Kim, Y. Seo, Y. Suh, H. Park and J. Sim, "A 300-MS/s, 76-ps-Resolution, 10-b Asynchronous Pipelined Time-to-Digital Converter With on-Chip Digital Background Calibration in 0.13-${\mu}m$ CMOS," IEEE J. Solid-State Circuits 48, 516-526 (2013). https://doi.org/10.1109/JSSC.2012.2217892
  21. Z. Cheng, X. Zheng, M. J. Deen and H. Peng, "Recent Developments and Design Challenges of High-Performance Ring Oscillator CMOS Time-to-Digital Converters," IEEE Trans. Electron Devices 63, 235-251 (2016). https://doi.org/10.1109/TED.2015.2503718
  22. J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, Boca Raton, 2008).
  23. M. E. O'Brien and D. G. Fouche, "Simulation of 3D laser Radar Systems," Lincoln Laboratory Journal 15, 37-60 (2005).