• Title/Summary/Keyword: 3D beam

Search Result 1,695, Processing Time 0.034 seconds

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy (선택적 분자선 에피택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현)

  • Kim, Yun-Joo;Kim, Eun-Hong;Seo, Yoo-Jung;Kim, Dong-Ho;Hahn, Cheol-Koo;Ogura, Mutsuo;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.167-168
    • /
    • 2006
  • High quality 3D-heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources ($As_2$, $As_4$) were varied to calibrate the selective area growth conditions. Scanning micro-photoluminescence ($\mu$-PL) measurements and following analysis revealed that the gradually (adiabatically) coupled 2DEG-1D-1DEG field effect transistor (FET) system was realized. This 3D-heterostructure is very promising for the realization of the meso-scopic electronic devices and circuits since it makes it possible to form direct ohmic contact to the (quasi) 1DEG.

  • PDF

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

  • Shokri, Abbas;Ramezani, Leila;Bidgoli, Mohsen;Akbarzadeh, Mahdi;Ghazikhanlu-Sani, Karim;Fallahi-Sichani, Hamed
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2018
  • Purpose: This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from cone-beam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods: A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values(MGVs) of each cylinder were calculated in each imaging protocol. Results: In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes(P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion: The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

Effect of Electron Beam Irradiation on the Microbial Safety and Qualities of Sliced Dried Squid (전자선 조사가 건조 오징어의 미생물학적 안정성 및 품질에 미치는 영향)

  • Ko, Jong-kwan;Ma, Yu-hyun;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.433-437
    • /
    • 2005
  • Electron beam irradiation was applied to examine the microbial safety and qualities of sliced dried squid. Sliced dried squid was irradiated at dose of 2, 4, 8, 12, and 16 kGy. Microorganisms contaminated in sliced dried squid were significantly decreased by irradiation. Decimal reduction dose (D/sub 10/ value) of total bacteria count, yeast and mold, coliforms in sliced dried squid were 8.57, 4.60, and 8.10 kGy, respectively. Electron beam irradiation caused negligible changes in Hunter color L, a, and b value. Sensory evaluations of irradiated sliced dried squid showed that there were no significant changes among the samples. These results indicate that electron beam irradiation improves the microbial safety and qualities of sliced dried squid.

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

A Study on the Three-Dimensional Heat Flow Analysis in the Laser Welding for Deep Penetration (레이저 심 용입 용저에서 3차원 열유동 해석에 관한 연구)

  • 이규태;김재웅
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • In this study, three-dimensional heat flow in laser beam welding for deep penetration was analyzed by using F.E.M common code, and then the results were compared with the experimental data. The models for analysis are full penetration welds and are made at three different laser powers (6, 9.9, 4.5 kW) with two different welding speeds (5.8mm/s, 5mm/s). The characteristics of thermal absorption by the workpiece during deep penetration laser welding can be represented by a combination of line heat source through the workpiece and distributed heat source at the top surface due to the plasma plume above the top surface. This gives an insight into the way in which the beam interacts with the material being welded. The analyses performed with the combined heat source models show comparatively good agreement between the experimental and calculated melt temperature isotherm, i.e, the fusion zone boundary. The results are used to explain the "nail head" appearance of fusion zone, which is quite common in laser beam welds.eam welds.

  • PDF

Numerical and experimental assessments of focused microwave thermotherapy system at 925 MHz

  • Kim, Jang-Yeol;Lee, Kwang-Jae;Kim, Bo-Ra;Jeon, Soon-Ik;Son, Seong-Ho
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.850-862
    • /
    • 2019
  • This work investigated three-dimensional (3D) focused microwave thermotherapy (FMT) at 925 MHz for a human tissue mimicking phantom using the time reversal (TR) principle for musculoskeletal disorders. We verified the proposed TR algorithm by evaluating the possibility of 3D beam focusing through simulations and experiments. The simulation, along with the electromagnetic and thermal analyses of the human tissue mimicking phantom model, was conducted by employing the Sim4Life commercial tool. Experimental validation was conducted on the developed FMT system using a fabricated human tissue mimicking phantom. A truncated threshold method was proposed to reduce the unwanted hot spots in a normal tissue region, wherein a beam was appropriately focused on a target position. The validation results of the simulation and experiments obtained by utilizing the proposed TR algorithm were shown to be acceptable. Effective beam focusing at the desired position of the phantom could be achieved.

Design of Soft X-ray Tube and Simulation of Electron Beam by Using an Electromagnetic Finite Element Method for Elimination of Static Electric Field (전자기 유한요소법 전자빔 시뮬레이션을 이용한 정전기장 제거용 연한 X-선관 설계 특성 연구)

  • Park, Tae-Young;Lee, Sang-Suk;Park, Rae-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.66-69
    • /
    • 2014
  • The spreading tube of X-ray cathode tube displayed with an electromagnetic finite element method was designed. To analyze a feature design and the concrete coordinate performance of soft X-ray tube modeling, the orbit of electron beam was simulated by OPERA-3D SW program. The fixed conditions were the applied voltage, the temperature, the work function of thermal electron between cathode and anode of tungsten. Through the analysis of distribution of electron beam and the variation of dividing region, the design of soft X-ray spreading tube equipped with two cross filaments was optimized.

The Analysis of Chemical Vapor Deposition Characteristics using Focused Ion Beam (FIB-CVD의 가공 공정 특성 분석)

  • Kang E.G.;Choi H.Z.;Choi B.Y.;Hong W.P.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.593-597
    • /
    • 2005
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\phi}$ 10nm and smaller is available. Currently FIB is not being applied in the fabrication of this micro part because of some problems to redeposition and charging effect of the substrate causing reduction of accuracy with regards to shape and productivity. Furthermore, the prediction of the material removal rate information should be required but it has been insufficient for micro part fabrication. The paper have the targets that are FIB-CVD characteristic analysis and minimum line pattern resolution achievement fur 3D micro fabrication. We make conclusions with the analysis of the results of the experiment according to beam current, pattern size and scanning parameters. CVD of 8 pico ampere shows superior CVD yield but CVD of 1318 pico ampere shows the pattern sputtered. And dwell time is dominant parameter relating to CVD yield.

  • PDF

Performance Evaluation of Stealth Chamber as a Novel Reference Chamber for Measuring Percentage Depth Dose and Profile of VitalBeam Linear Accelerator (VitalBeam 선형가속기의 심부선량백분율과 측방선량분포 측정을 위한 새로운 기준 전리함으로서 스텔스 전리함의 성능 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee;Kang, Sang-Won;Kim, Kyeong-Hyeon;Jung, Jae-Yong;Shin, Young-Joo;Suh, Tae-Suk;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • The purpose of this study is to evaluate the performance of a "stealth chamber" as a novel reference chamber for measuring percentage depth dose (PDD) and profile of 6, 8 and 10 MV photon energies. The PDD curves and dose profiles with fields ranging from $3{\times}3$ to $25{\times}25cm^2$ were acquired from measurements by using the stealth chamber and CC 13 chamber as reference chamber. All measurements were performed with Varian VitalBeam linear accelerator. In order to assess the performance of stealth chamber, PDD curves and profiles measured with stealth chamber were compared with measurement data using CC13 chamber. For PPDs measured with both chambers, the dosimetric parameters such as $d_{max}$ (depth of maximum dose), $D_{50}$ (PDD at 50 mm depth), and $D_{100}$ (PDD at 100 mm depth) were analyzed. Moreover, root mean square error (RMSE) values for profiles at $d_{max}$ and 100 mm depth were evaluated. The measured PDDs and profiles between the stealth chamber and CC13 chamber as reference detector had almost comparable. For PDDs, the evaluated dosimetric parameters were observed small difference (<1%) for all energies and field sizes, except for $d_{max}$ less than 2 mm. In addition, the difference of RMSEs for profiles at $d_{max}$ and 100 mm depth was similar for both chambers. This study confirmed that the use of stealth chamber for measuring commission beam data is a feasible as reference chamber for fields ranging from $3{\times}3$ to $20{\times}20cm^2$. Furthermore, it has an advantage with respect to measurement of the small fields (less than $3{\times}3cm^2$ field) although not performed in this study.