Browse > Article
http://dx.doi.org/10.12989/sss.2014.13.4.659

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models  

Varello, Alberto (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Carrera, Erasmo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Publication Information
Smart Structures and Systems / v.13, no.4, 2014 , pp. 659-683 More about this Journal
Abstract
The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.
Keywords
refined 1D finite elements; unified formulation; higher-order models; arbitrary cross-section; nonhomogeneous material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tang, D., Yang, C., Mondal, S., Liu, F., Canton, G., Hatsukami, T. and Yuan, C. (2008), "A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models", J. Biomech., 41(4), 727-736.   DOI
2 Yu, W., Volovoi, V., Hodges, D. and Hong, X. (2002), "Validation of the variational asymptotic beam sectional analysis (VABS)", AIAA J., 40(10), 2105-2113.   DOI   ScienceOn
3 Tong, X., Tabarrok, B. and Yeh, K.Y. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 186(5), 821-835.   DOI   ScienceOn
4 Varello, A. and Carrera, E., "Static and dynamic analysis of a thin-walled layered cylinder by refined 1DTheories", Proceedings of the 10th World Congress on Computational Mechanics, Sao Paulo, Brazil, July.
5 Yuan, C., Kerwin, W., Ferguson, M., Polissar, N., Zhang, S., Cai, J. and Hatsukami, T. (2002), "Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization", J. Mag. Reson. Imaging, 15(1), 62-67.   DOI   ScienceOn
6 Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143.   DOI
7 Balzani, D., Brinkhues, S. and Holzapfel, G.A. (2012), "Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls", Comput. Method. Appl. M., 213-216, 139-151.   DOI   ScienceOn
8 Bathe, K. (1996), Finite element procedures, Prentice Hall, Upper Saddle River, New Jersey.
9 Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293.   DOI   ScienceOn
10 Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam structures: classical and advanced theories, John Wiley & Sons.
11 Carrera, E. and Petrolo, M. (2012), "Refined one-dimensional formulations for laminated structure analysis", AIAA J., 50(1), 176-189.   DOI   ScienceOn
12 Carrera, E., Petrolo, M. and Varello, A. (2012), "Advanced beam formulations for free vibration analysis of conventional and joined wings", J. Aerospace Eng., 25(2), 282-293.   DOI
13 Euler, L. (1744), De Curvis Elasticis, Bousquet, Lausanne and Geneva.
14 Carrera, E. and Varello, A. (2012), "Dynamic response of thin-walled structures by variable kinematicone-dimensional models", J. Sound Vib., 331(24), 5268-5282.   DOI   ScienceOn
15 Cheng, G., Loree, H., Kamm, R., Fishbein, M. and Lee, R. (1993), "Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correction", Circulation, 87(4), 1179-1187.   DOI
16 Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917.   DOI   ScienceOn
17 Gao, H., Long, Q., Graves, M., Gillard, J. and Li, Z. (2008), "Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in-vivo magnetic resonance images of four patients", J. Biomech., 42(10), 1416-1423.
18 Ganesan, R. and Zabihollah, A. (2007a), "Vibration analysis of tapered composite beams using a higher-order finite element, Part I: formulation", Compos. Struct., 77(3), 306-318.   DOI   ScienceOn
19 Ganesan, R. and Zabihollah, A. (2007b), "Vibration analysis of tapered composite beams using ahigher-order finite element, Part II: parametric study", Compos. Struct., 77(3), 319-330.   DOI   ScienceOn
20 Gao, H. and Long, Q. (2008), "Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques", J. Biomech., 41(14), 3053-3059.   DOI   ScienceOn
21 Jones, R. (1999), Mechanics of composite materials, 2nd Ed., Taylor & Francis, Philadelphia.
22 Gao, H., Long, Q., Graves, M., Gillard, J. and Li, Z. (2009), "Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging", J. Magn. Reson. Imaging, 30(1), 85-93.   DOI
23 Holzapfel, G.A., Sommer, G. and Regitnig, P. (2004), "Anisotropic mechanical properties of tissue components in human atherosclerotic plaques", J. Biomech. Eng. - T ASME, 126(5), 657-665.   DOI   ScienceOn
24 Huang, H., Virmani, R., Younis, H., Burke, A., Kamm, R. and Lee, R. (2001), "The impact of calcification on the biomechanical stability of atherosclerotic plaques", J. Biomech. Eng. - T ASME, 103(8), 1051-1056.
25 Kapania, K. and Raciti, S. (1989), "Recent advances in analysis of laminated beams and plates, Part II:vibrations and wave propagation", AIAA J., 27(7), 935-946.   DOI
26 Kock, S., Nygaard, J., Eldrup, N., Frund, E., Klaerke, A., Paaske, W., Falk, E. and Yong Kim, W. (2008), "Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models", J. Biomech., 41(8), 1651-1658.   DOI   ScienceOn
27 Li, Z., Howarth, S., Trivedi, R., U-King-Im, J., Graves, M., Brown, A., Wang, L. and Gillard, J. (2006), "Stress analysis of carotid plaque rupture based on in vivo high resolution MRI", J. Biomech., 39(14), 2611-2622.   DOI   ScienceOn
28 Marur, S.R. and Kant, T. (1996), "Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling", J. Sound Vib., 194(3), 337-351.   DOI   ScienceOn
29 Loree, H., Kamm, R., Stringfellow, R. and Lee, R. (1992), "Effects of fibrous cap thickness on peakcircumferential stress in model atherosclerotic vessels", Circulation Res., 71(4), 850-858.   DOI   ScienceOn
30 Librescu, L. and Na, S. (1998), "Dynamic response of cantilevered thin-walled beams to blast and sonic-boom loadings", Shock Vib., 5(1), 23-33.   DOI
31 Marur, S.R. and Kant, T. (1997), "On the performance of higher order theories for transient dynamic analysis of sandwich and composite beams", Comput. Struct., 65(5), 741-759.   DOI   ScienceOn
32 Marur, S.R. and Kant, T. (2007), "On the angle ply higher order beam vibrations", Comput. Mech., 40(1),25-33.   DOI
33 Na, S. and Librescu, L. (2001), "Dynamic response of elastically tailored adaptive cantilevers of nonuniformcross section exposed to blast pressure pulses", Int. J. Impact Eng., 25(9), 847-867.   DOI   ScienceOn
34 RamalingerswaraRao, S. and Ganesan, N. (1995), "Dynamic response of tapered composite beams usinghigher order shear deformation theory", J. Sound Vib., 187(5), 737-756.   DOI   ScienceOn
35 Rodriguez, J., Ruiz, C., Doblare, M. and Holzapfel, G. (2008), "Mechanical stresses in abdominal aorticaneurysms: influence of diameter asymmetry and material anisotropy", J. Biomech. Eng. - T ASME, 130(2), 021023(1-10).   DOI   ScienceOn
36 Silvestre, N. and Camotim, D. (2002), "Second-order generalised beam theory for arbitrary orthotropic materials", Thin Wall. Struct., 40(9), 791-820.   DOI   ScienceOn
37 Capelli, C., Gervaso, F., Petrini, L., Dubini, G. and Migliavacca, F. (2009), "Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry", Medical Eng. Phys., 31(4), 441-447.   DOI   ScienceOn
38 Davies, M. (1996), "Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White lecture 1995", Circulation, 94(8), 2013-2020.   DOI   ScienceOn
39 Li, Z., Tang, T., U-King-Im, J., Graves, M., Sutcliffe, M. and Gillard, J. (2008), "Assessment of carotid plaque vulnerability using structural and geometrical determinants", Circulation, 72(7), 1092-1099.   DOI   ScienceOn
40 Timoshenko, S. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41, 744-746.   DOI
41 Kant, T. and Gupta, A. (1988), "A finite element model for a higher-order shear deformable beam theory", J. Sound Vib., 125(2), 193-202.   DOI   ScienceOn
42 Petersen, S., Peto, V., Rayner, M., Leal, J., Luengo-Fernandez, R. and Gray, A. (2005), European Cardiovascular Disease Statistics, British Heart Foundation (BHF), London.