• Title/Summary/Keyword: 3D Video Coding

Search Result 193, Processing Time 0.056 seconds

Carriage of Volumetric Visual Video based Coding(V3C) 국제표준 기술 동향

  • Nam, Gwi-Jung;Kim, Gyu-Heon
    • Broadcasting and Media Magazine
    • /
    • v.26 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • 최근 디바이스와 5G 통신의 비약적인 발전을 통해 가상/증강 현실 분야, 자율 주행 등 3차원 그래픽스 기술에 대한 연구가 활발하게 진행되고 있으며, 3차원 정보를 면밀하게 표현할 수 있는 포인트 클라우드와 다시점 초실감 콘텐츠가 주목받고 있다. 이와 같은 콘텐츠는 전통적인 2D 비디오 대비 많은 데이터를 사용하고 있기에, 효율적 사용을 위해서는 압축이 필수적으로 요구된다. 이에 따라 국제표준화기구인 ISO/IEC 산하 Moving Picture Expert Group(MPEG)에서는 고밀도 포인트 클라우드 및 초다시점 실감형 콘텐츠에 대한 압축 방안으로 V-PCC(Video based Point Cloud Compression) 및 MIV(MPEG Immersive Video) 기술을 표준화 중에 있으며, 또한, 압축된 데이터를 효율적으로 저장, 전송하기 위한 방안으로 Carriage of Visual Volumetric Video Coding(V3C) 표준화가 진행중에 있다. 본 고에서는 MPEG에서 진행중인 V3C 표준 기술에 대하여 살펴보고자 한다.

A Study of Very Low Bit-Rate Color Video Coding Using Adaptive Wavelet Trasform (적응적 웨이블릿 변환을 이용한 저속 비트율 컬러 비디오 코딩에 관한 연구)

  • Kim, Hye-Gyeong;O, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.701-710
    • /
    • 2000
  • This paper presents a new method for an efficient coding of very low bit-rate color video based on adaptive wavelet transform. Our approach reveals that the coding process works more efficiently if the quantized wavelet coefficients are preprocessed by a mechanism exploiting the redundancies in the wavelet subband structure. Thus, we focuses optimized activity of coding part, and exhaustive overlapped block motion compensation is utilized to ensure coherency in motion compensated error frames, and raised cosine window is applied. The horizontal and vertical components of motion vectors are encoded separately using adaptive arithmetic coding while significant wavelet coefficients are encoded in bit-plane order using adaptive arithmetic coding. On average the proposed codec exceeds H.263 and ZTE in peak signal-to-noise ratio by as much as 2.07 and 1.38dB at 28 kbits, respectively. Fore entire sequence coding, 3DWCVC method is superior to H.263 and ZTE by 0.35 and 0.71dB on average, respectively.

  • PDF

An Improved GoGOP Structure for Multi-view Video Coding in H.264/AVC (H.264/AVC에서 다시점 비디오 부호화를 위한 향상된 GoGOP 구조)

  • Shin, Kwang-Mu;Lee, Seo-Young;Kim, Sung-Min;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.271-275
    • /
    • 2008
  • Corresponding recent continuous development of multimedia technology with improved desire of using various contents, a new realistic feeling media technology is being created. Of them all, multi-view video is being researched actively as foundation technology of 3D TV, free-view point video etc. But encoding time and bit-rate are increased as view numbers are increased. In this paper we propose improved GoGOP structure to enhance the coding efficiency of multi-view video by applying methods which are using techniques such as Key frame position adjustment, dynamically changing the number of I frame and B frame. As experimental results, technique proposed in this paper reduces bit-rate having similar PSNR value compared with Anchor structure.

3-D Lossy Volumetric Medical Image Compression with Overlapping method and SPIHT Algorithm and Lifting Steps (Overlapping method와 SPIHT Algorithm과 Lifting Steps을 이용한 3차원 손실 의료 영상 압축 방법)

  • 김영섭
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3D) irreversible integer wavelet transform. We offer an application of the Set Partitioning in Hierarchical Trees(SPIHT) algorithm〔l-3〕to medical images, using a 3-D wavelet decomposition and a 3-D spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method, where careful scaling and truncations keep the integer precision small and the transform unitary. As the compression rate increases, the boundaries between adjacent coding units become increasingly visible. Unlike video, the volume image is examined under static condition, and must not exhibit such boundary artifacts. In order to eliminate them, we utilize overlapping at axial boundaries between adjacent coding units. We have tested our encoder on medical images using different integer filters. Results show that our algorithm with certain filters performs as well. The improvement is visibly manifested as fewer ringing artifacts and noticeably better reconstruction of low contrast.

  • PDF

Auto-Covariance Analysis for Depth Map Coding

  • Liu, Lei;Zhao, Yao;Lin, Chunyu;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3146-3158
    • /
    • 2014
  • Efficient depth map coding is very crucial to the multi-view plus depth (MVD) format of 3-D video representation, as the quality of the synthesized virtual views highly depends on the accuracy of the depth map. Depth map contains smooth area within an object but distinct boundary, and these boundary areas affect the visual quality of synthesized views significantly. In this paper, we characterize the depth map by an auto-covariance analysis to show the locally anisotropic features of depth map. According to the characterization analysis, we propose an efficient depth map coding scheme, in which the directional discrete cosine transforms (DDCT) is adopted to substitute the conventional 2-D DCT to preserve the boundary information and thereby increase the quality of synthesized view. Experimental results show that the proposed scheme achieves better performance than that of conventional DCT with respect to the bitrate savings and rendering quality.

A Fast Mode Decision of Non-anchor Pictures in Multi-view Video Coding for 3D Applications (3D 응용을 위한 다시점 영상 부호화에서 비기준 화면의 빠른 모드결정 기법)

  • Jung, Choong-Hyun;Shin, Kwang-Mu;Park, Seong-Ho;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.859-869
    • /
    • 2012
  • The Multi-view Video Coding (MVC) which is exploiting disparities between views has been developed to improve the coding efficiency of multi-view video. But MVC has a problem of having high computing complexities because of disparity estimation. This paper propose a fast mode decision for non-anchor picture to reduce the computational time of MVC. The proposed method uses two phases. Anchor pictures in hierarchical B picture structure have a higher correlation with prediction mode selection of non-anchor pictures, so in the first phase, prediction mode of non-anchor pictures is selected by exploiting the macro-block regions in anchor picture. In the second phase, we select a reference direction of inter prediction mode exploiting a higher correlation among reference directions of inter prediction modes of 7 block sizes. Experimental results show that the proposed method could save average about 44% in the encoding time with negligible coding efficiency losses.

Reusable HEVC Design in 3D-HEVC

  • Heo, Young Su;Bang, Gun;Park, Gwang Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.818-828
    • /
    • 2016
  • This paper proposes a reusable design for the merging process used in three-dimensional High Efficiency Video Coding (3D-HEVC), which can significantly reduce the implementation complexity by eliminating duplicated module redundancies. The majority of inter-prediction coding tools used in 3D-HEVC are utilized through a merge mode, whose extended merging process is based on built-in integration to completely wrap around the HEVC merging process. Consequently, the implementation complexity is unavoidably very high. To facilitate easy market implementation, the design of a legacy codec should be reused in an extended codec if possible. The proposed 3D-HEVC merging process is divided into the base merging process of reusing HEVC modules and reprocessing process of refining the existing processes that have been newly introduced or modified for 3D-HEVC. To create a reusable design, the causal and mutual dependencies between the newly added modules for 3D-HEVC and the reused HEVC modules are eliminated, and the ineffective methods are simplified. In an application of the proposed reusable design, the duplicated reimplementation of HEVC modules, which account for 50.7% of the 3D-HEVC merging process, can be eliminated while maintaining the same coding efficiency. The proposed method has been adopted as a normative coding tool in the 3D-HEVC international standard.

Implementing 3DoF+ 360 Video Compression System for Immersive Media (실감형 미디어를 위한 3DoF+ 360 비디오 압축 시스템 구현)

  • Jeong, Jong-Beom;Lee, Soonbin;Jang, Dongmin;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.743-754
    • /
    • 2019
  • System for three degrees of freedom plus (3DoF+) and 6DoF requires multi-view high resolution 360 video transmission to provide user viewport adaptive 360 video streaming. In this paper, we implement 3DoF+ 360 video compression system which removes the redundancy between multi-view videos and merges the residual into one video to provide high quality 360 video corresponding to an user's head movement efficiently. Implementations about 3D warping based redundancy removal method between 3DoF+ 360 videos and residual extraction and merger are explained in this paper. With the proposed system, 20.14% of BD-rate reduction in maximum is shown compared to traditional high-efficiency video coding (HEVC) based system.

A Fast Inter-layer Mode Decision Method inScalable Video Coding (공간적 스케일러블 비디오 부호화에서 계층간 모드 고속 결정 방법)

  • Lee, Bum-Shik;Hahm, Sang-Jin;Park, Chang-Seob;Park, Keun-Soo;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.12 no.4
    • /
    • pp.360-372
    • /
    • 2007
  • We propose a fast inter-layer mode decision method by utilizing coding information of base layer upward its enhancement layer inscalable video coding (SVC), also called MPEG-4 part 10 Advanced Video Coding Amendment 3 or H.264 Scalable Extension (SE) which is being standardized. In this paper, when the motion vectors from the base layer have zero motion (0, 0) in inter-layer motion prediction or the Integer Transform coefficients of the residual between current MB and the motion compensated MB by the predicted motion vectors from the base layer are all zero, the block mode of the corresponding block to be encoded at the enhancement layer is determined to be the $16{\times}16$ mode. In addition, if the predicted mode of the MB to be encoded at the enhancement layer is not equal to the $16{\times}16$ mode, then the rate-distortion optimization is only performed on the reduced candidated modes which are same or smaller partitioned modes. Our proposed method exhibits the complexity reduction in encoding time up to 72%. Nevertheless, it shows negligible PSNR degradation and bit rate increase up to 0.25dB and 1.73%, respectively.

Error-Resilience Enhancement based on Polyphase Down Sampling for the H.264 Video Coding Technology (에러 강인성 향상을 위한 다상 다운 샘플링 적용 H.264 동영상 부호화 기술)

  • Jung, Eun Ku;Jia, Jie;Kim, Hae Kwang;Choi, Hae Chul;Kim, Jae Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.340-347
    • /
    • 2005
  • This paper presents a polyphase down sampling based multiple description coding applied to H.264 video coding standard. For a given macroblock, a residual macroblock is calculated by motion estimation, and before applying DCT, quantization and entrophy coding of the H.264 coding process, the polyphase down sampling is applied to the residual macroblock to code in four separate descriptions. Experiments were performed for all the 9 test sequences of JVT SVC standardization in various packet loss patterns. Experimental results show that the proposed one gives 0.5 to 5 dB enhancement over an error-concealment based on the slice group map technolgoy.