• Title/Summary/Keyword: 3-D coordinates transformation

Search Result 66, Processing Time 0.028 seconds

Development of Mandibular Movements Measuring System Using Double Stereo-Cameras

  • Park, Soon-Yong;Park, Sung-Kee;Cho, Chang-Hyun;Kim, Mun-Sang;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1183-1188
    • /
    • 2005
  • In this paper, we propose a 3D automated measuring system which measures the mandibular movements and the reference plane of the jaw movements. In diagnosis and treatment of the malocclusions, it is necessary to estimate the mandibular movements and the reference plane of the jaw movements. The proposed system is configured with double stereo-cameras, PC, two moving pattern plates(MPPs), two fixed pattern plates(FPPs) and one orbital marker. The virtual pattern plate is applied to calculate the homogeneous transformation matrices which describe the coordinates systems of the FPP and MPP with respect to the world coordinates system. To estimate the parameters of the hinge axis, the Euler's theorem is applied. The hinge axis points are intersections between the FPPs and the hinge axis. The coordinates of a hinge axis point with respect to the MPP coordinates system are set up to fixed value. And then, the paths of the jaw movement can be calculated by applying the homogeneous transformation matrix to fixed hinge axis point. To examine the accuracy of the measurements, experiments of measuring the hinge axis points and floating paths of them are performed using the jaw motion simulator. As results, the measurement errors of the hinge axis points are within reasonable boundary, and the floating paths are very similar to the simulator's moving path.

  • PDF

Coordinates Transformation and Correction Techniques of the Distorted Omni-directional Image (왜곡된 전 방향 영상에서의 좌표 변환 및 보정)

  • Cha, Sun-Hee;Park, Young-Min;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.816-819
    • /
    • 2005
  • This paper proposes a coordinate correction technique using the transformation of 3D parabolic coordinate function and BP(Back Propagation) neural network in order to solve space distortion problem caused by using catadioptric camera. Although Catadioptric camera can obtain omni-directional image at all directions of 360 degrees, it makes an image distorted because of an external form of lens itself. Accordingly, To obtain transformed ideal distance coordinate information from distorted image on 3 dimensional space, we use coordinate transformation function that uses coordinates of a focus at mirror in the shape of parabolic plane and another one which projected into the shape of parabolic from input image. An error of this course is modified by BP neural network algorithm.

  • PDF

Implementation of Transformation Algorithm for a Leg-wheel Hexapod Robot Using Stereo Vision (스테레오 영상처리를 이용한 바퀴달린 6족 로봇의 형태변형 알고리즘 구현)

  • Lee, Sang-Hun;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.202-204
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a Transformation algorithm of an Leg-wheel Hexapod Robot is proposed. Robot designed as can have advantages that do transfer possibility fast mobility in flat topography and uneven topography through walk that use wheel drive. In the proposed system, using the disparity data obtained from the left and right images captured by the stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Robot uses construed environmental data and transformation algorithm, decide wheel drive and leg waik, and can calculate width of street and regulate width of robot.

  • PDF

Coordinate Calibration of the ODVS using Delta-bar-Delta Neural Network (Delta-bar-Delta 알고리즘을 이용한 ODVS의 좌표 교정)

  • Kim Do-Hyeon;Park Young-Min;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.669-675
    • /
    • 2005
  • This paper proposes coordinates transformation and calibration algorithm using 3D parabolic coordinate transformation and delta-bar-delta neural algorithm for the omni-directional image captured by catadioptric camera. Experimental results shows that the proposed algorithm has accuracy and confidence in coordinate transformation which is sensitive to environmental variables.

A Study on the Image-Based 3D Modeling Using Calibrated Stereo Camera (스테레오 보정 카메라를 이용한 영상 기반 3차원 모델링에 관한 연구)

  • 김효성;남기곤;주재흠;이철헌;설성욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.27-33
    • /
    • 2003
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, we propose the image-based, 3D modeling system using calibrated stereo cameras. The proposed algorithm for rendering, 3D model consists of three steps, camera calibration, 3D reconstruction, and 3D registration step. In the camera calibration step, we estimate the camera matrix for the image aquisition camera. In the 3D reconstruction step, we calculate 3D coordinates using triangulation from corresponding points of the stereo image. In the 3D registration step, we estimate the transformation matrix that transforms individually reconstructed 3D coordinates to the reference coordinate to render the single 3D model. As shown the result, we generated relatively accurate 3D model.

  • PDF

Vision based 3D Hand Interface Using Virtual Two-View Method (가상 양시점화 방법을 이용한 비전기반 3차원 손 인터페이스)

  • Bae, Dong-Hee;Kim, Jin-Mo
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.43-54
    • /
    • 2013
  • With the consistent development of the 3D application technique, visuals are available at more realistic quality and are utilized in many applications like game. In particular, interacting with 3D objects in virtual environments, 3D graphics have led to a substantial development in the augmented reality. This study proposes a 3D user interface to control objects in 3D space through virtual two-view method using only one camera. To do so, homography matrix including transformation information between arbitrary two positions of camera is calculated and 3D coordinates are reconstructed by employing the 2D hand coordinates derived from the single camera, homography matrix and projection matrix of camera. This method will result in more accurate and quick 3D information. This approach may be advantageous with respect to the reduced amount of calculation needed for using one camera rather than two and may be effective at the same time for real-time processes while it is economically efficient.

Camera Parameter Extraction Method for Virtual Studio Applications by Tracking the Location of TV Camera (가상스튜디오에서 실사 TV 카메라의 3-D 기준 좌표와 추적 영상을 이용한 카메라 파라메타 추출 방법)

  • 한기태;김회율
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.176-186
    • /
    • 1999
  • In order to produce an image that lends realism to audience in the virtual studio system. it is important to synchronize precisely between foreground objects and background image provided by computer graphics. In this paper, we propose a method of camera parameter extraction for the synchronization by tracking the pose of TV camera. We derive an equation for extracting camera parameters from inverse perspective equations for tracking the pose of the camera and 3-D transformation between base coordinates and estimated coordinates. We show the validity of the proposed method in terms of the accuracy ratio between the parameters computed from the equation and the real parameters that applied to a TV camera.

  • PDF

Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection (깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술)

  • Lee, Wonhee;Kim, Kwang Gi;Chung, Seung Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

Compression of 3D Mesh Geometry and Vertex Attributes for Mobile Graphics

  • Lee, Jong-Seok;Choe, Sung-Yul;Lee, Seung-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.3
    • /
    • pp.207-224
    • /
    • 2010
  • This paper presents a compression scheme for mesh geometry, which is suitable for mobile graphics. The main focus is to enable real-time decoding of compressed vertex positions while providing reasonable compression ratios. Our scheme is based on local quantization of vertex positions with mesh partitioning. To prevent visual seams along the partitioning boundaries, we constrain the locally quantized cells of all mesh partitions to have the same size and aligned local axes. We propose a mesh partitioning algorithm to minimize the size of locally quantized cells, which relates to the distortion of a restored mesh. Vertex coordinates are stored in main memory and transmitted to graphics hardware for rendering in the quantized form, saving memory space and system bus bandwidth. Decoding operation is combined with model geometry transformation, and the only overhead to restore vertex positions is one matrix multiplication for each mesh partition. In our experiments, a 32-bit floating point vertex coordinate is quantized into an 8-bit integer, which is the smallest data size supported in a mobile graphics library. With this setting, the distortions of the restored meshes are comparable to 11-bit global quantization of vertex coordinates. We also apply the proposed approach to compression of vertex attributes, such as vertex normals and texture coordinates, and show that gains similar to vertex geometry can be obtained through local quantization with mesh partitioning.

The Position Estimation of a Body Using 2-D Slit Light Vision Sensors (2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정)

  • Kim, Jung-Kwan;Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF