• 제목/요약/키워드: 3 점 굽힘 시험

검색결과 101건 처리시간 0.063초

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • 제14권3호
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (구리 질화막을 이용한 구리 접합 구조의 접합강도 연구)

  • Seo, Hankyeol;Park, Haesung;Kim, Gahui;Park, Young-Bae;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제27권3호
    • /
    • pp.55-60
    • /
    • 2020
  • The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.

A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process (플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구)

  • Park J.H.;Lee K.H.;Ye K.H.;Kim S.T.;Jeon C.H.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • 제31권1호
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

The effects of brazing conditions on the bond strength of the SiC/SiC and SiC/mild steel joints brazed by Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에서 브레이징 조건이 접합강도에 미치는 영향의 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.104-114
    • /
    • 1997
  • The microstructure and bond strength were investigated on the SiC/SiC and SiC/mild steel joints brazed by Ag-5at%Ti alloy. Ag-5at%Ti-2at%Fe and -5at%Fe brazing alloys were also used to see the effects of Fe addition on the bond strength of SiC/SiC brazed joints. Brazing temperature and brazing gap were selected and examined as brazing variables. The microstructure of SiC/SiC brazed joints was affected by Fe addition to the Ag-5at%Ti alloy, but the bond strength was not. Increasing brazing temperature also changed the microstructure of $Ti_5Si_3$ reaction layer and brazing alloy matrix of the SiC/SiC and SiC/mild steel joints, but not the bond strength. Brazing gap had a great effects on the bond strength. Decreasing brazing gap from 0.2 mm to 0.1 mm in SiC/SiC brazing increased the bond strength from 187 MPa to 263 MPa and, in SiC/mild steel brazing, from 189 MPa to 212 MPa. It was concluded that the most important parameter on the bond strength in SiC/SiC and SiC/mild steel brazing was the relative ratio between brazing gap and specimen size.

  • PDF

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite (환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Yoo, Yeong Hwan;Cho, Jae Bong;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • 제33권3호
    • /
    • pp.593-598
    • /
    • 2016
  • We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

Development of Simplified Finite Element Models for Welded Joints (용접 결합부에 대한 단순화 유한요소 모델 개발)

  • Song, Seong-Il;Ahn, Sung Wook;Kim, Young Geul;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권11호
    • /
    • pp.1191-1198
    • /
    • 2015
  • In this paper, we develop simplified finite element (FE) models for butt-, lap- and T-welded joints by performing numerical and experimental experiments. Three-point bending tests of butt- and lap-welded specimens are performed to obtain the stiffness of the specimens and the strains at points near the welding beads. Similarly the stiffness and strains of T-welded specimen are measured by applying a point load at the end of the specimen. To develop simplified FE models, we consider the shape parameters of width, thickness and the angle of weld elements in the numerical simulations. The shape parameters of the simplified FE models are determined by building linear regression models for the experimental data sets.

PROPERTIES OF LIGHT-CURED COMPOSITE RESINS CONTAINING $SrF_2$, GLASS FILLER ($SrF_2$계 충진재를 함유한 광중합형 복합레진의 특성)

  • Kim, Hee-Jung;Kim, Kyung-Nam;Choi, Byung-Jai;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제28권1호
    • /
    • pp.54-66
    • /
    • 2001
  • The aim of this study was to investigate the fluoride release and some mechanical properties including 3-point bending strength, amount of abrasion, surface hardness, water sorption/solubility and cytotoxicity of the newly developed composite resins containing 8, 16, 24 wt% $SrF_2$ glass filler (VF8, VF16, VF24) and four commercially available composite resins, Heliomolar(HE), Verdonfil(VE), Z100(ZH) and Aelitefil(AE). To investigate cytotoxic effect, agar overlay assay was done. Amount of fluoride released into distilled water was measured over a 62-days period from VF8, VF16, VF24 and HE. Results were as follows: 1. Experimental composite resins showed similar mechanical properties to commercial composite resins, but 3-point bending strength and surface hardness of experimental composite resins were inferior to ZH. 2. Over a 62-day Period, the amount of fluoride released was ordered: VF24>VF16>VF8>HE. In experimental composite resins, the amount of fluoride released was 9-23 times greater than HE and seemed to be proportional to the content of $SrF_2$ glass filler. 3. Experimental composite resins and all control composite resins showed mild cytotoxicity. This study showed significantly greater fluoride release from newly developed composite resins than control(HE) and addition of $SrF_2$ glass filler did not decrease mechanical properties or increase cytotoxicity of composite resin. The results from this study imply that newly developed composite resin have adequate mechanical properites, mild cytotoxicity and some potential for secondary caries prevention.

  • PDF

Cu Thickness Effects on Bonding Characteristics in Cu-Cu Direct Bonds (Cu 두께에 따른 Cu-Cu 열 압착 웨이퍼 접합부의 접합 특성 평가)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Carmak, Erkan;Kim, Bioh;Matthias, Thorsten;Lee, Hak-Joo;Hyun, Seung-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제17권4호
    • /
    • pp.61-66
    • /
    • 2010
  • Cu-Cu thermo-compression bonding process was successfully developed as functions of the deposited Cu thickness and $Ar+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the interfacial toughness was measured by 4-point bending test. Pre-annealing with $Ar+H_2$ gas at $300^{\circ}C$ is effective to achieve enough interfacial adhesion energy irrespective of Cu film thickness. Successful Cu-Cu bonding process achieved in this study results in delamination at $Ta/SiO_2$ interface rather than Cu/Cu interface.

Evaluation of strength according to surface abrasion of lithium disilicate glass ceramic by 3-point bending strength test (3점 굽힘강도 시험을 통한 Lithium disilicate glass ceramic의 표면 연마 정도에 따른 강도 평가)

  • Lee, Ha-Na;Kim, Eo-Bin;Kang, Seen-Young;Lee, Kyung-Eun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • 제40권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of lithium disilicate glass ceramic polishing on the strength of the final prosthesis. Methods: Fourteen lithium disilicate glass ceramic specimens were prepared. These were randomly divided into two groups of seven(LPG: low polishing group, HPG: high polishing group). In LPG, SiC paper was sequentially polished using 300, 600, 800, 1000 grit, and the specifications of the test piece were adjusted. HPG was sequentially polished using 300, 600, 800, 1000, 1200, 1500, and 2000 grit. Two groups of specimens are executed 3- point bending test. Using the statistical program SPSS 22.0, the average values of the strengths of the two groups were compared in the Mann-Whiteney test. The significance level was set at 0.05. Results: The mean strength value of HPG was measured at $307.14{\pm}23.28MPa$ significantly higher than LPG(p<0.001). Conclusion : The final polishing of the prosthesis is aesthetically important but has proven to play an important role in the flexural strength, early fracture, and prolongation of the prosthesis.