• Title/Summary/Keyword: 2.4 GHz Power Amplifier

Search Result 213, Processing Time 0.026 seconds

A Ka-Band 8 W Power Amplifier Module Using 4-Way Waveguide Power Combiners with High Isolation (높은 격리도 특성의 4:1 도파관 전력합성기를 이용한 Ka-대역 8 W 전력 증폭 모듈)

  • Shin, Im-Hyu;Kim, Choul-Young;Lee, Man-Hee;Joo, Ji-Han;Lee, Sang-Joo;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.262-265
    • /
    • 2012
  • In this paper, a Ka-band 8 W power amplifier module with WR-28 waveguide input and output ports is implemented and measured using four 2 W power amplifier modules and 4:1 waveguide power combiners with high isolation of 25 dB at 35 GHz. The 2 W power amplifier modules are fabricated using waveguide-to-microstrip transitions and show output power of 32.5~33.3 dBm and power gain of 26.9~28.7 dB at 35 GHz. Four 2 W power amplifier modules are combined through 4:1 waveguide power combiners with resistive septum and the combined power shows 39.0 dBm(8 W) under 6 V drain bias and 39.6 dBm(9.1 W) under 6.5 V drain bias at 35 GHz.

A 2.65 GHz Doherty Power Amplifier Using Internally-Matched GaN-HEMT (내부정합된 GaN-HEMT를 이용한 2.65 GHz Doherty 전력증폭기)

  • Kang, Hyunuk;Lee, Hwiseob;Lim, Wonseob;Kim, Minseok;Lee, Hyoungjun;Yoon, Jeongsang;Lee, Dongwoo;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.269-276
    • /
    • 2016
  • This paper presents a 2.65 GHz Doherty power amplifier with internally-matched GaN HEMT. Internal matching circuits were adopted to match its harmonic impedances inside the package. Simultaneously, due to the partially matched fundamental impedance, input and output matching networks become simpler. Bond wires and parasitic elements of transistor package were predicted by EM simulation. For the LTE signal with 6.5 dB PAPR, the implemented Doherty power amplifier shows a power gain of 13.0 dB, a saturated output power of 55.4 dBm, an efficiency of 49.1 %, and ACLR of -26.3 dBc at 2.65 GHz with an operating voltage of 48 V.

Implementation of a High Power Amplifier using Low Loss Radial Power Combiner and Water Cooling System (저 손실 레디알 전력 결합기와 수냉 시스템을 이용한 고전력 증폭기 구현)

  • Choi, Sung-Wook;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.319-324
    • /
    • 2018
  • In this paper, a high power amplifier using RF power solid-state semiconductor is implemented to overcome a problem of plasma generator which has the low efficiency, short life span, the difficult maintenance and the high-operation cost. This power amplifier consists of a radial combiner of low-loss and high power operation and the sixteen 300 W power amplifiers to obtain 3 kW output power for high power operation implemented in semiconductors at industrial scientific medical (ISM) band of 2.45 GHz. In addition, this amplifier overcomes the problem of heat generation due to high power by applying a water-cooled structure to the individual amplifiers. This power amplifier, which is made up of a small system, achieves 50% efficiency at the desired output.

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

2.4-GHz Power Amplifier with Power Detector Using Metamaterial-Based Transformer-Type On-Chip Directional Coupler

  • Dang, Trung-Sinh;Tran, Anh-Dung;Lee, Bomson;Yoon, Sang-Woong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.554-557
    • /
    • 2013
  • This letter presents a power amplifier (PA) with an on-chip power detector for 2.4-GHz wireless local area network application. The power detector consists of a clamp circuit, a diode detector, and a coupled line directional coupler. A series inductor for an output matching network in the PA is combined with a through line of the coupler, which reduces the coupling level. Therefore, the coupler employs a metamaterial-based transformer configuration to increase coupling. The amount of coupling is increased by 2.5 dB in the 1:1 symmetric transformer structure and by 4.5 dB from two metamaterial units along the coupled line.

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

Enhanced fT and fMAX SiGe BiCMOS Process and Wideband Power Efficient Medium Power Amplifier

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.232-238
    • /
    • 2008
  • In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-metal (MIM) capacitor and three types of resistors are all integrated in this process. This MPA is a two stage amplifier with all matching components and bias circuits integrated on-chip. A P1dB of 17.7 dBm has been measured with a power gain of 8.7 dB at 3.4 GHz with a total current consumption of 30 mA from a 3 V supply voltage at $25^{\circ}C$. The measured 3 dB bandwidth is 2.7 GHz and the maximum Power Added Efficiency (PAE) is 41 %, which are very good results for a fully integrated Medium PA. The fabricated circuit occupies a die area of $1.7mm{\times}0.8mm$.

Differential 2.4-GHz CMOS Power Amplifier Using an Asymmetric Differential Inductor to Improve Linearity (비대칭 차동 인덕터를 이용한 2.4-GHz 선형 CMOS 전력 증폭기)

  • Jang, Seongjin;Lee, Changhyun;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.726-732
    • /
    • 2019
  • In this study, we proposed an asymmetric differential inductor to improve the linearity of differential power amplifiers. Considering the phase error between differential signals of the differential amplifier, the location of the center tap of the differential inductor was modified to minimize the error. As a result, the center tap was positioned asymmetrically inside the differential inductor. With the asymmetric differential inductor, the AM-to-AM and AM-to-PM distortions of the amplifier were suppressed. To confirm the feasibility of the inductor, we designed a 2.4 GHz differential CMOS PA for IEEE 802.11n WLAN applications with a 64-quadrature amplitude modulation (QAM), 9.6 dB peak-to-average power ratio (PAPR), and a bandwidth of 20 MHz. The designed power amplifier was fabricated using the 180-nm RF CMOS process. The measured maximum linear output power was 17 dBm, whereas EVM was 5%.

Polarization-maintained Single-mode 400-W Yb-doped Fiber Laser with 2.5-GHz Linewidth from a 3-stage MOPA System (3단 MOPA 시스템에서 2.5 GHz 선폭을 가지는 편광유지 단일모드 400 W 이터븀 첨가 광섬유 레이저 연구)

  • Park, Young Ho;Youn, Young Seok;Jung, Min Wan;Jun, Changsu;Yu, Bong-Ahn;Shin, Woojin
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, we report on the high power amplification of a narrow-linewidth Yb-doped polarization-maintained (PM) fiber laser in a 3-stage, all-fiber master oscillator power amplifier (MOPA) system. The linearly polarized single-mode output power was 400 W with an 85% slope efficiency, with a linewidth of 2.5 GHz (full width at half maximum). Furthermore, mitigation of mode instability (MI) has been demonstrated by tightly coiling the gain fiber to a diameter of 11 cm. In addition, methods for higher power scaling are discussed.

A Study on Design of the LNA for 2.4GHz WLAN Using LTCC Process (LTCC 공정을 이용한 2.4GHz WLAN 대역 LNA 설계)

  • Oh Jae-Wook;Yang Jae-Soo;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.215-218
    • /
    • 2006
  • In this paper, a small size, $7{\times}6mm^2$, Low Noise Amplifier(LNA) using LTCC process was fabricated with multi-layer structure for 2.4GHz wireless LAN. The measured results demonstrate that the bandwidth is 130 MHz, and the operating frequency is from 2.39GHz to 2.52GHz. The power gain is above 7.3 dB in the operating frequency range and the gain flatness is 0.5 dB. The maximum S11 is -4 dB and the maximum S22 is -7.5 dB. The noise figure is less than 1.83 dB. The measured power gain, S11 and S22 were had poorer performance than the simulation results. The reason for this discrepancy is that the input and output matching was not performed exactly. However, the noise figure of the LTCC low noise amplifier is better than simulation result. It is found that it is possible to fabricate a LTCC low noise amplifier in a small size.

  • PDF