DOI QR코드

DOI QR Code

Implementation of a High Power Amplifier using Low Loss Radial Power Combiner and Water Cooling System

저 손실 레디알 전력 결합기와 수냉 시스템을 이용한 고전력 증폭기 구현

  • Choi, Sung-Wook (Department of Electronic and Electrical Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 최성욱 (금오공과대학교 전자및전기공학과) ;
  • 김영 (금오공과대학교 전자공학부)
  • Received : 2018.07.18
  • Accepted : 2018.08.21
  • Published : 2018.08.31

Abstract

In this paper, a high power amplifier using RF power solid-state semiconductor is implemented to overcome a problem of plasma generator which has the low efficiency, short life span, the difficult maintenance and the high-operation cost. This power amplifier consists of a radial combiner of low-loss and high power operation and the sixteen 300 W power amplifiers to obtain 3 kW output power for high power operation implemented in semiconductors at industrial scientific medical (ISM) band of 2.45 GHz. In addition, this amplifier overcomes the problem of heat generation due to high power by applying a water-cooled structure to the individual amplifiers. This power amplifier, which is made up of a small system, achieves 50% efficiency at the desired output.

본 논문은 RF 전력 반도체를 사용한 고출력 전력증폭기를 구현한 것으로 기존의 플라즈마 발생 장치에 사용되는 마그네트론 방식의 고출력 증폭기 문제점인 낮은 효율과 짧은 수명, 유지 보수의 어려움 그리고 높은 운용비용 등을 개선하기 위한 것이다. 구현된 고출력 전력증폭기는 2.45 GHz ISM (industrial scientific medical) 대역에서 공간 결합방식을 이용한 저 손실, 고출력 레디알 결합기와 반도체로 3 kW급 출력을 얻기 위해서 300 W 급 전력 증폭기 16개의 증폭기로 구성되어 있다. 또한, 이 증폭기는 개별적인 증폭기에 수냉 방식의 구조를 적용하여 고출력에 따른 발열문제를 극복하였다. 소형 시스템으로 구성된 이 전력증폭기는 원하는 출력에서 50%의 높은 효율을 얻었다.

Keywords

References

  1. I. Langmuir, “The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths,” Physical Review Juornals Archive, Vol. 33, No. 6, pp. 954-989, June 1929.
  2. J. Winter, R. Brandenburg and K-D Weltmann, “Atmospheric pressure plasma jets : an overview of devices and new directions,” Plasma Sources Science and Technology, Vol. 24, No. 6, pp. 1-19, Oct. 2015.
  3. H. C. Lee, S, J. Oh and C. W. Chung, “Experimental observation of the skin effect on plasma uniformity in inductively coupled plasmas with a radio frequency bias,” Plasma Sources Science and Technology, Vol. 21, No. 3, pp. 1-6, May, 2012.
  4. C. Paolo, G. Franco and L. Ernesto, High Efficiency RF and Microwave Solid State Power Amplifiers, 1st ed. West Sussex, United Kingdom: John Wiley and Sons, 2009.
  5. K. Krishnamurthy, M. J. Poulton, J. Martin, R. Vetury, J. D. Brown, and J. B. Shealy, "A 250W S-Band GaN HEMT Amplifier," in IEEE Compound Semiconductor Integrated Circuit Symposium, Portland: OR, pp. 1-4, Oct. 2007.
  6. E.C. Niehenke, R. A. Pucel, and I. J. Bahl, “Microwave and millimeter-wave integrated circuits,” IEEE Transaction Microwave Theory & Technology, Vol. 50, No. 3, pp. 846-857, Mar. 2002. https://doi.org/10.1109/22.989968
  7. W. Wojtasiak, D. Gryglewski, S. Zygadlo, and A. Rutkowski, "A high power amplifiers for L-Band Transmitter with AM modulation," in 12th International Conference on Microwaves Radar and Wireless Communications, Krakow: Poland, May, 1998.
  8. V.A Goryashko, “A megawatt class compact power combiner for solid-state amplifiers,” Journal of Electromagnetic Waves and applications, Vol. 28, No. 18, pp. 2243-2255, Sep. 2014. https://doi.org/10.1080/09205071.2014.962187
  9. K. Song, Y. Fan, “Broadband radial waveguide power amplifier using a spatial power combining technique,” IET Microwave, Antennas & Propagation, Vol. 3, No. 8, pp. 1179-1185, 2009. https://doi.org/10.1049/iet-map.2008.0299
  10. A. Jain, D. K. Sharma, A. K. Gupta, and P.R. Hannurkar, “Design of high power radio frequency radial combiner for proton accelerator,” Review of Scientific & Instruments, Vol. 80, No. 1, pp. 1-4, Feb. 2009.

Cited by

  1. 단선과 단락 스터브가 연결된 전송선로를 이용한 높은 분배비율을 갖는 전력 분배기 vol.25, pp.3, 2021, https://doi.org/10.12673/jant.2021.25.3.229