• Title/Summary/Keyword: 2.4 GHz Power Amplifier

Search Result 213, Processing Time 0.023 seconds

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

A low-noise transceiver design for 10GHz band motion sensor (인체감지 센서용 저 잡음 10GHz대역 송수신기 설계)

  • Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.313-318
    • /
    • 2012
  • In this study, we propose a low-noise transceiver for 10GHz motion sensor. The transceiver presented here has a circuit(Hittite HMC908LC5) that is composed of a two way-$0^{\circ}$ power splitter(the 1:2 block) and a $90^{\circ}$ Hybrid. The noise reduction circuit utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. A modeling and analysis have been pursued using CST MWS. A prototype sensor was manufactured to measure the performance and experimental results show that the proposed sensor is good enough to use for a accurate motion sensor.

Multichannel Transimpedance Amplifier Away in a $0.35\mu m$ CMOS Technology for Optical Communication Applications (광통신용 다채널 CMOS 차동 전치증폭기 어레이)

  • Heo Tae-Kwan;Cho Sang-Bock;Park Min Park
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.53-60
    • /
    • 2005
  • Recently, sub-micron CMOS technologies have taken the place of III-V materials in a number of areas in integrated circuit designs, in particular even for the applications of gjgabit optical communication applications due to its low cost, high integration level, low power dissipation, and short turn-around time characteristics. In this paper, a four-channel transimpedance amplifier (TIA) array is realized in a standard 0.35mm CMOS technology Each channel includes an optical PIN photodiode and a TIA incorporating the fully differential regulated cascode (RGC) input configuration to achieve effectively enhanced transconductance(gm) and also exploiting the inductive peaking technique to extend the bandwidth. Post-layout simulations show that each TIA demonstrates the mid-band transimpedance gain of 59.3dBW, the -3dB bandwidth of 2.45GHz for 0.5pF photodiode capacitance, and the average noise current spectral density of 18.4pA/sqrt(Hz). The TIA array dissipates 92mw p in total from a single 3.3V supply The four-channel RGC TIA array is suitable for low-power, high-speed optical interconnect applications.

Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier

  • Ham, Junghyun;Jung, Haeryun;Bae, Jongsuk;Lim, Wonseob;Hwang, Keum Cheol;Lee, Kang-Yoon;Park, Cheon-Seok;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.802-809
    • /
    • 2014
  • This paper presents a dual-mode bias modulator (BM) for complementary metal oxide semiconductor (CMOS) power amplifiers (PAs). The BM includes a hybrid buck converter and a normal buck converter for an envelope tracking (ET) mode for high output power and for an average power tracking (APT) mode for low output power, respectively. The dual-mode BM and CMOS PA are designed using a $0.18-{\mu}m$ CMOS process for the 1.75 GHz band. For the 16-QAM LTE signal with a peak-to-average power ratio of 7.3 dB and a bandwidth of 5 MHz, the PA with the ET mode exhibited a poweradded efficiency (PAE) of 39.2%, an EVM of 4.8%, a gain of 19.0 dB, and an adjacent channel leakage power ratio of -30 dBc at an average output power of 22 dBm, while the stand-alone PA has a PAE of 8% lower at the same condition. The PA with APT mode has a PAE of 21.3%, which is an improvement of 13.4% from that of the stand-alone PA at an output power of 13 dBm.

A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems

  • Park, Bong-Hyuk;Lee, Kyung-Ai;Hong, Song-Cheol;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.421-429
    • /
    • 2007
  • This paper presents a direct-conversion CMOS transceiver for fully digital DS-UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase-locked loop (PLL), and a voltage controlled oscillator (VCO). A single-ended-to-differential converter is implemented in the down-conversion mixer and a differential-to-single-ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 $mm^2$ die using standard 0.18 ${\mu}m$ CMOS technology and a 64-pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low-power, and high-speed wireless personal area network.

  • PDF

0.2W Ka-band MMIC CPW Power Amplifier Design and Fabrication (0.2W급 Ka-band MMIC CPW 전력증폭기 설계 및 제작)

  • 정상화;이상효;김대현;홍성철;권영우;서광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1035-1040
    • /
    • 2001
  • SNU-ISRC 0.25$\mu\textrm{m}$ pHEMT 표준 공정을 사용하여 Ka-band에서 동작하는 0.2W급 MMIC CPW 전력증폭기를 설계, 제작하였다. 기존의 MMIC 공정에서 사용되는 마이크로스트립 전송선 대신 CPW 전송선을 사용함으로써 보다 간단하고 저가의 공정이 가능하였다. 전력증폭기의 설계에서는 보다 넓은 주파수 대역에서 원하는 출력전력을 얻기 위해서 출력단을 Wilkinson coupler를 사용하였는데, 일반적으로 Wilkinson coupler에 사용되는 50Ω 특성임피던스 전송선 대신에 25Ω 특성임피던스 전송선을 사용하여 좋은 출력단 전력 정합과 출력 반사손실을 동시에 얻을 수 있었다. 제작된 전력증폭기의 측정결과, 주파수 27GHz에서 출력전력 23.4dBm과 Power-added Efficiency 21.7%의 결과를 보였다.

  • PDF

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.

Design and Fabrication of Ka-Band Active PIN Diode Limiter for a Millimeter Wave Seeker (밀리미터파 탐색기용 Ka 대역 능동 PIN 다이오드 리미터 설계 및 제작)

  • Yang, Seong-Sik;Lim, Ju-Hyun;Na, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.220-228
    • /
    • 2012
  • In this paper, we explained the design technique about Ka-band active limiter for protecting the receiver of a millimeter wave seeker. To implement low flat leakage power, we proposed the control circuit of active limiter to control limiter voltage with PRF(Pulse Repetition Frequency) signal and input power. This active limiter consisted of the conventional 2 stage passive limiter, a feedback circuit with a directional coupler, detector, non-inverting amplifier and over-current protection resistance. As the test result of the fabricated Ka-band limiter, it had 1 GHz bandwidth, 3.5 dB insertion loss at the small input power and -7.5 dBm flat leakage at the 4 W RF input power, respectively.

GaN HPA Monolithic Microwave Integrated Circuit for Ka band Satellite Down link Payload (Ka 대역 위성통신 하향 링크를 위한 GaN 전력증폭기 집적회로)

  • Ji, Hong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8643-8648
    • /
    • 2015
  • In this paper presents the design and demonstrate 8 W 3-stage HPA(High Power Amplifier) MMIC(Monolithic Microwave Integrated Circuits) for Ka-band down link satellite communications payload system at 19.5 GHz ~ 22 GHz frequency band. The HPA MMIC consist of 3-stage GaN HEMT(Hight Electron Mobility Transistors). The gate periphery of $1^{st}$ stage, $2^{nd}$ stage and output stage is determined $8{\times}50{\times}2$ um, $8{\times}50{\times}4$ um and $8{\times}50{\times}8$ um, respectively. The fabricated HPA MMIC shows size $3,400{\times}3,200um^2$, small signal gain over 29.6 dB, input matching -8.2 dB, output matching -9.7 dB, output power 39.1 dBm and PAE 25.3 % by using 0.15 um GaN technology at 20 V supply voltage in 19.5~22 GHz frequency band. Therefore, this HPA MMIC is believed to be adaptable Ka-band satellite communication payloads down link system.

Variable and Flexible Optical Frequency Comb Source using Dual Mach Zehnder Modulator and Phase Modulator

  • Naveed, Abbas;Choi, Bong-Soo;Tran, ThanhTuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • We demonstrated experimentally a variable optical frequency comb source using a cascaded dual parallel Mach Zehnder modulator (DPMZM) and a phase modulator (PM). With this simple configuration and applying low drive voltages, we generated variable comb source composed of spectral lines 3, 5, 7, 9 and 11 with 10-GHz frequency spacing, also generated 2 and 3 spectral lines with 20 GHz frequency spacing. The generated comb source maintains high spectral coherence across the entire bandwidth with good spectral flatness (within 1-dB for 2, 3, 5, 7 comb lines, within 2-dB for 9-comb lines and within 3-dB for 11 comb lines). The flat and variable comb source is mainly achieved by manipulating 6 operating parameters of DPMZM, setting RF amplifier gain, connected at phase modulator and phase shifters. Hence the method is simple and offers great flexibility in achieving flat and variable comb spectrum, which is experimentally demonstrated. This brings advantages of power efficiency due to low driving voltages, simplicity and cost effectiveness to the system.