• Title/Summary/Keyword: 2-torsion free

Search Result 68, Processing Time 0.02 seconds

Conformation of Antifungal Agent Fluconazole

  • Han, Seong Jun;Kang Kee Long;Lee Sung Hee;Chung Uoo Tae;Kang Young Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.262-265
    • /
    • 1993
  • Conformational free energy calculations using an empirical potential function and a hydration shell model (program CONBIO) were carried out on antifungal agent fluconazole in the unhydrated and hydrated states. The initial geometry of fluconazole was obtained from two minimized fragments of it using a molecular mechanics MMPMI and followed by minimizing with a semiempirical AM1 method. In both states, the feasible conformations were obtained from the calculations of conformational energy, conformational entropy, and hydration free energy by varying all the torsion angles of the molecule. The intramolecular hydrogen bonds of isopropyl hydroxyl hydrogen and triazole nitrogens and the structural flexibility are of significant importance in stabilizing the conformations of fluconazole in both states. Hydration is proved to be one of the essential factors in stabilizing the overall conformation in aqueous solution. Two F atoms of phenyl ring are not identified as an essential key in determining the stable conformations and may be responsible for the interaction with the receptor of fluconazole.

NONEXISTENCE OF A CREPANT RESOLUTION OF SOME MODULI SPACES OF SHEAVES ON A K3 SURFACE

  • Choy, Jae-Yoo;Kiem, Young-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.35-54
    • /
    • 2007
  • Let $M_c$ = M(2, 0, c) be the moduli space of O(l)-semistable rank 2 torsion-free sheaves with Chern classes $c_1=0\;and\;c_2=c$ on a K3 surface X, where O(1) is a generic ample line bundle on X. When $c=2n\geq4$ is even, $M_c$ is a singular projective variety equipped with a holomorphic symplectic structure on the smooth locus. In particular, $M_c$ has trivial canonical divisor. In [22], O'Grady asks if there is any symplectic desingularization of $M_{2n}$ for $n\geq3$. In this paper, we show that there is no crepant resolution of $M_{2n}$ for $n\geq3$. This obviously implies that there is no symplectic desingularization.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

A NOTE ON LIE IDEALS OF PRIME RINGS

  • Shuliang, Huang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2010
  • Let R be a 2-torsion free prime ring, U a nonzero Lie ideal of R such that $u^2\;{\in}\;U$ for all $u\;{\in}\;U$. In the present paper, it is proved that if d is a nonzero derivation and [[d(u), u], u] = 0 for all $u\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Moreover, suppose that $d_1$, $d_2$, $d_3$ are nonzero derivations of R such that $d_3(y)d_1(x)\;=\;d_2(x)d_3(y)$ for all x, $y\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Finally, some examples are given to demonstrate that the restrictions imposed on the hypothesis of the above results are not superfluous.

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-125
    • /
    • 2018
  • Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

ON THE PROPERTIES OF LOCAL HOMOLOGY GROUPS OF SHEAVES

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 1980
  • 모든 기호(記號)는 G.E Bredon의 저(著) Sheaf Theory의 기호(記號)를 따른다. A가 torsion free이며 elementary sheaf이라 하자. 그리고 L을 injective L-module이라 하자 $dim_{\varphi}X<{\infty}$이라면 support의 $family{\varphi}$와 locally subset z에 대하여 ${\Gamma}_{z}(^{\sim}Hom({\Gamma}_{\varphi}(L),L){\otimes}A){\simeq}H_0{^{z}}(X:A)\;H_{-p}{^{z}}(X:A)=0,\;p=1,2,3,$⋯⋯ 이며 support의 family c와 compact subset z에 대하여도 ${\Gamma}_{z}(^{\sim}Hom({\Gamma}_{c}(L),L){\otimes}A){\simeq}H_0{^{z}}(X:A)\;H_{-y}{^{z}}(X:A)=0,\;p=1,2,3,$⋯⋯ A가 elementary이면 locally closed z와 z에서 closed인 $z^{\prime}$ 그리고 $z^{\prime\prime}=z-z^{\prime}$에 대하여 exact sequence ⋯⋯${\rightarrow}H^{z^{\prime}}_{p}\;(X:A){\rightarrow}H^{z}_{p}(X:A){\rightarrow}H^{z^{\prime\prime}}_{p}\;(X:A){\rightarrow}$⋯⋯ 가 존재(存在)한다.

  • PDF

ORDERED GROUPS IN WHICH ALL CONVEX JUMPS ARE CENTRAL

  • Bludov, V.V.;Glass, A.M.W.;Rhemtulla, Akbar H.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.225-239
    • /
    • 2003
  • (G, <) is an ordered group if'<'is a total order relation on G in which f < g implies that xfy < xgy for all f, g, x, y $\in$ G. We say that (G, <) is centrally ordered if (G, <) is ordered and [G,D] $\subseteq$ C for every convex jump C $\prec$ D in G. Equivalently, if $f^{-1}g f{\leq} g^2$ for all f, g $\in$ G with g > 1. Every order on a torsion-free locally nilpotent group is central. We prove that if every order on every two-generator subgroup of a locally soluble orderable group G is central, then G is locally nilpotent. We also provide an example of a non-nilpotent two-generator metabelian orderable group in which all orders are central.

Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

  • Rehman, Nadeem ur;Muthana, Najat Mohammed;Raza, Mohd Arif
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.397-408
    • /
    • 2016
  • Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal of R. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v{\in}L$, where m, n, l are xed positive integers, then $L{\subseteq}Z$. We also examine the case when R is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature.

MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS

  • Wang, Fanggui;Kim, Hwankoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, we characterize w-Noetherian modules in terms of polynomial modules and w-Nagata modules. Then it is shown that for a finite type w-module M, every w-epimorphism of M onto itself is an isomorphism. We also define and study the concepts of w-Artinian modules and w-simple modules. By using these concepts, it is shown that for a w-Artinian module M, every w-monomorphism of M onto itself is an isomorphism and that for a w-simple module M, $End_RM$ is a division ring.

ON GENERALIZED LIE IDEALS IN SEMI-PRIME RINGS WITH DERIVATION

  • Ozturk, M. Ali;Ceven, Yilmaz
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The object of this paper is to study($\sigma,\;\tau$)-Lie ideals in semi-prime rings with derivation. Main result is the following theorem: Let R be a semi-prime ring with 2-torsion free, $\sigma$ and $\tau$ two automorphisms of R such that $\sigma\tau=\tau\sigma$=, U be both a non-zero ($\sigma,\;\tau$)-Lie ideal and subring of R. If $d^2(U)=0$, then d(U)=0 where d a non-zero derivation of R such that $d\sigma={\sigma}d,\;d\tau={\tau}d$.

  • PDF