• Title/Summary/Keyword: 1D $^1H-NMR$

Search Result 639, Processing Time 0.026 seconds

Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated ($1{\rightarrow}3$)($1{\rightarrow}6$)-${\beta}$-D-Glucan

  • Brandi, Jamile;Oliveira, Eder C.;Monteiro, Nilson K.;Vasconcelos, Ana Flora D.;Dekker, Robert F.H.;Barbosa, Aneli M.;Silveira, Joana L.M.;Mourao, Paulo A.S.;Silva, Maria De Lourdes Corradi Da
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1036-1042
    • /
    • 2011
  • The exopolysaccharide botryosphaeran ($EPS_{GLC}$; a ($1{\rightarrow}3$)($1{\rightarrow}6$)-${\beta}$-D-glucan from Botryosphaeria rhodina MAMB-05) was sulfonated to produce a water-soluble fraction ($EPS_{GLC}$-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction ($EPS_{GLC}$-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and $^{13}C$ nuclear magnetic resonance ($^{13}C$ NMR) spectroscopies. $EPS_{GLC}$ and $EPS_{GLC}$-RS were also assayed for anticoagulation activity, and $EPS_{GLC}$-RS was identified as an anticoagulant.

Anti-inflammatory and Anti-bacterial Constituents from the Extracts of Daucus carota var. sativa Aerial Parts (당근 지상부 추출물 유래 항염 및 항균 활성 성분)

  • Kim, Jung Eun;Jo, Yeon Jeong;Lee, Nam Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, we investigated anti-inflammatory and anti-bacterial constituents from Daucus carota var. sativa (carrot) areal parts. For the extract and solvent fractions, the anti-inflammatory activities were examined by measuring the nitric oxide (NO) production using LPS-stimulated RAW 264.7 cells. Among them, the ethyl acetate (EtOAc) fraction decreased the NO level in a dose-dependent manner. To elucidate further anti-inflammatory mechanisms, EtOAc fraction was evaluated by estimating their effects on the production of prostaglandin $E_2$ and pro-inflammatory cytokines as well as on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). As a result, the EtOAc fraction was determined to inhibit the production of $PGE_2$, IL-$1{\beta}$, IL-6 and reduce the iNOS, COX-2 protein expression. Upon the anti-bacterial tests using Staphylococcus epidermidis and Propionibacterium acnes, n-hexane (Hex) and EtOAc fractions showed the most potent activities. Three phytochemicals were isolated form the EtOAc fraction; diosmetin (1), diosmin (2), cynaroside (3). The chemical structures of the isolated compounds were elucidated based on the spectroscopic data including $^1H$ and $^{13}C$ NMR spectra, as well as comparison of the data to the literatures. Anti-inflammatory and anti-bacterial effects were studied for the isolates. All of the compounds (1 - 3) decreased the NO production, effectively. Also, compound 3 showed anti-bacterial activity on P. acnes. Based on these results, D. carota var. sativa extract could be potentially applicable as anti-inflammatory and anti-bacterial ingredients in cosmetic formulations.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

Characterization of the Effects of Silver Nanoparticles on Liver Cell Using HR-MAS NMR Spectroscopy

  • Kim, Si-Won;Kim, So-Sun;Lee, Sang-Mi;Kwon, Bo-Bae;Choi, Jin-Hee;Hyun, Jin-Won;Kim, Suhk-Mann
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2021-2026
    • /
    • 2011
  • AgNPs (silver nanoparticles) has been widely used for the commercial products, which have antimicrobial agent, medical devices, food industry and cosmetics. Despite, AgNPs have been reported as toxic to the mammalian cell, lung, liver, brain and other organs and many researchers have investigated the toxicity of AgNPs. In this study, we investigated toxicity of the AgNPs to the liver cell using metabolomics based on HRMAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Resonance) technics, which could apply to the intact tissues or cells, to avoid the sample destruction. Target profiling and multivariative statistical analysis were performed to analyze the 1D $^1H$ spectrum. The results show that the concentrations of many metabolites were affected by the AgNPs in the liver cell. The concentrations of glutathione (GSH), lactate, taurine, and glycine were decreased and most of amino acids, choline analogues, and pyruvate were increased by the AgNPs. Moreover, the levels of the metabolites were recovered upto similar level of metabolites in the normal cell by the pre-treatment of NAC, external antioxidant. The results suggest that the depletion of the GSH by the AgNPs might induce the conversion of lactate and taurine to the pyruvate.

The Reactivity and Regiochemical Effect of Nitrosonium Species in the Nitrosation of N-Methyl-N'-Substituted Phenylureas (N-메틸-N'-치환페닐우레아화합물들의 니트로소화 반응에 있어서 니트로소화 화학종의 반응성 및 위치화학적 영향)

  • Jack C. Kim;In-Seop Cho;Soon-Kyu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.240-248
    • /
    • 1991
  • The regioselectivity in the nitrosation of seven N-methyl-N'-substituted phenylureas ($CH_3NHCONHC_6H_4-G$; G = H, p-CH$_3$, m-CH$_3$, m-CH$_3$O, p-F, m-F, m-Br) was examined using NaNO$_2$ and 4 different acids (diluted HCl, HCOOH, CH$_3$COOH, CF$_3$COOH). In all cases, the two regioisomeric products, N-nitroso-N-methyl-N'-substituted phenylureas (A) and N'-nitroso-N-methyl-N'-substituted phenylureas (B) were observed to be formed as major products and product ratios were determined by the integration of their methyl peaks in $^1$H-NMR. Electron donating substitutent(G) on phenyl of the ureas generally led to increase the ratio of B to A. The data have revealed that the relative sensitivity of the nitrosonium species (HONO, HCOONO, CH$_3$COONO, CF$_3$COONO) toward the change of electron density on nitrogen with phenyl substitutents are 1.00 : 0.93 : 0.78 : > ∼ 0.7.

  • PDF

Simultaneous Quantitative Analysis of Flavonoids Isolated from the Leaves of Diospyros kaki (감나무 잎으로부터 분리된 플라보노이드의 동시 정량분석)

  • Kim, Ga-Ram;Kim, Eun-Nam;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The leaves of Diospyros kaki Thunb. were used to treat heart disease and hypotension in traditionally East Asia. The purpose of this study is to simultaneously quantitiative analyze the content of flavonoids in leaves of D. kaki. The isolated flavonoids from the leaves of D. kaki, and the structure of the isolated flavonoids were analyzed based on 1H and 13C NMR spectrum compared to literature data. Simultaneous quantitative analysis of the isolated flavonoids was validated using high performance liquid chromatography (HPLC). Results showed that the calibration curves of the flavonoid compounds were confirmed that they have a large linearity with a correlation coefficient (R2) of 0.99. In the intra-day and inter-day analysis, accuracy and precision of five compounds were measured that accuracy was 94.39 to 114.47% and precision was less than 3.00%. Content analysis showed hyperoside (1.30 ± 0.09%), astragalin (0.81 ± 0.06%), trifoline (1.58 ± 0.07%), quercetin (0.13 ± 0.02%) and kaempferol (1.33 ± 0.25%).

α-Pyrones and Yellow Pigments from the Sponge-Derived Fungus Paecilomyces lilacinus

  • Elbandy, Mohamed;Shinde, Pramod B.;Hong, Jong-Ki;Bae, Kyung-Sook;Kim, Mi-Ae;Lee, Sang-Mong;Jung, Jee H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.188-192
    • /
    • 2009
  • New $\alpha$-pyrones (1 and 2) and cyclohexenones (13 and 14) were isolated along with known analogues (3, 5−12) from the ethyl acetate extract of the whole broth of the fungus Paecilomyces lilacinus, a strain derived from a marine sponge Petrosia sp. Their structures were established by interpretation of 1D and 2D NMR, and FABMS data. It is interesting to isolate cyclohexenone derivatives from the genus Paecilomyces (family Trichocomaceae, order Eurotiales), since these cyclohexenones were previously reported only from far distinct genera, Phoma and Alternaria (family Pleosporaceae, order Pleosporales). Compounds 6, 7, and 9 were evaluated for cytotoxicity against a small panel of human solid tumor cell lines. Their cytotoxicity was insignificant upto a concentration of 30 ${\mu}g/mL$.

Synthesis and Characterization of Cationic and Anionic Cyclodextrin Oligomers and Their Use in Layer-by-Layer Film Formation

  • Yang, Sung Yun;Hoonor, Rekha;Jin, Hye-Seung;Kim, Jeongkwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2016-2022
    • /
    • 2013
  • Ionically modified ${\beta}$-cyclodextrins, which have excellent water-solubility, have been interested in purification technology as well as drug carrier system. The present study summarizes the synthesis and characterization of cationic and anionic ${\beta}$-cyclodextrin (${\beta}$-CyD) products using by polycondensation. The oligo (${\beta}$-CyD)s are synthesized from ${\beta}$-CyD, epichlorohydrin (EP) and choline chloride (CC; for cationic polymer) or chloroacetic acid (CAA; for anionic polymer) through one step polycondenstaion process. Unlike the previous studies, we successfully purified the ionic ${\beta}$-CyD condensation products from the ${\beta}$-CyD reaction mixtures and accomplished a great level of structural analysis. The detailed structural analysis of these ionic ${\beta}$-CyD compounds is done by $^1H$ NMR, MALDI-TOF as well as GPC analysis and confirms the formation of oligomers with a few units of ${\beta}$-CyD. We found that the sequence of reactant addition also could effect on the molecular weight of the resulting product as well as the molar ratio of the reactants. Finally, we used the cationic and anionic ${\beta}$-CyD oligomers for fabricating multilayer films by layer-layer process.

Isolation and Identification of Antimicrobial Compound from Dandelion(Taraxacum platycarpum D.) (민들레로부터 항균성 화합물의 분리 및 동정)

  • 한영실;김건희;민경찬;이선희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.822-829
    • /
    • 1999
  • Antimicrobial activity of dandelion(Taraxacum platycarpum D.) was investigated. Methanol extract of dried dandelion was fractionated to hexane, chloroform, ethylacetate, butanol and aqueous fraction. Ethylacetate fraction among these fractions showed the highest inhibitory effect on the microorganisms such as B. subtilis, L. monocytogenes, S. aureus, E. coli and V. parahaemolyticus at $500\mu\textrm{g}/disc$. Ethylacetate fraction was further fractionated into 13 fractions by silica gel column and thin layer chromatography(TLC). The results showed that ethylacetate fractions No. 4, 5 and 6 had high antimicrobial activity. These were mixed again, re separated and five fractions were obtained. Among them, No. 2 fraction had the highest inhibitory effect on the microorganisms, which was then separated into six fractions. In the 3rd fractionation, No. 3 fraction was identified as benzoic acid by HPLC, $^{1}H-NMR$ and GC MS.

  • PDF

Production of the Isocyanide Inhibitor of Melanin Biosynthesis by Trichoderma sp. MR-93 (Trichoderma sp. MR-93 균주가 생산하는 Isocyanide 계열의 Melanin 생성 저해물질)

  • Lee, Choong-Hwan;Chun, Hyo-Kon;Chung, Myung-Chul;Lee, Ho-Jae;Bae, Kyung-Sook;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.209-213
    • /
    • 1995
  • During the screening of inhibitors of melanin biosynthesis from microbial secondary metabolites, a fungal strain MR-93 which was capable of producing high level of an inhibitor was selected from plant leaf. Based on taxonomic studies, the fungus could be classified as a strain of Trichoderma sp.. The active compound (MR-93D) was purified from the culture broth by Diaion HP-20 column chromatography, ethylacetate extraction, Sephadex LH-20 column chromatography and HPLC. The inhibitor was identified as 4-hydroxy-8-isocyano-l-oxaspiro[4-4]cyclonon-8-en-2- one by spectroscopic methods of UV, $^{1}$H-NMR, ESIMS and IR. MR-93D showed a strong tyrosinase inhibitory activity with 0.03 $\mu$g/m of IC$_{50}$ value. It also inhibited melanin biosynthesis with 35 mm inhibition zone at 30 $\mu$g/paper disc in Streptomyces bikiniensis, a bacterium used as an indicator organism in this work.

  • PDF