Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2508

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes  

Lee, Ju-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.
Keywords
Cold shock protein; Listeria monocytogenes; Homology modeling; Purification; Structure;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Delbruck, H.; Mueller, U.; Perl, D.; Schmid, F. X.; Heinemann, U. J. Mol. Biol. 2001, 313, 359-369.   DOI
2 Kremer, W.; Schuler, B.; Harrieder, S.; Geyer, M.; Gronwald, W.; Welker, C.; Jaenicke, R.; Kalbitzer, H. R. Eur. J. Biochem. 2001, 268, 2527-2539.   DOI
3 Woody, R. W. Biopolymers 1978, 17, 1451-1467.   DOI
4 Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Biochemistry 1993, 32, 5560-5565.   DOI
5 Perczel, A.; Park, K.; Fasman, G. D. Proteins: Struct. Funct. Genet. 1992, 13, 57-69.   DOI
6 Vuilleumier, S.; Sancho, J.; Loewenthal, R.; Fersht, A. R. Biochemistry 1993, 32, 10303-10313.   DOI
7 Sreerama, N.; Manning, M. C.; Powers, M. E.; Zhang, J. X.; Goldenberg, D. P.; Woody, R. W. Biochemistry 1993, 38, 10814- 10822.
8 Sreeama, N.; Venyaminov, S. Y.; Woody, R. W. Protein Sci. 1999, 8, 370-380.
9 Moon, C. H.; Jeong, K. W.; Kim, H. J.; Heo, Y. S.; Kim, Y. M. Bull. Korean Chem. Soc. 2009, 30, 2647-2650.   DOI
10 Farber, J. M.; Peterkin, P. I. Microbiol. Rev. 1991, 55, 476-511.
11 Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Hwang, Y. S.; Kim, Y. M. Bull. Korean Chem. Soc. 2008, 29, 1311-1314.   DOI
12 Birnboim, H. C.; Doly, J. Nuc. Acids Res. 1979, 7, 1413-1518.
13 Kim, W. H.; Back, S. H.; Kang, D. I.; Shin, H. C.; Kim, Y. M. Bull. Korean Chem. Soc. 2008, 29, 2259-2263.   DOI
14 Wilkins, M. R.; Gasteiger, E.; Bairoch, A.; Sanchez, J. C.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F. Methods Mol. Biol. 1999, 112, 531.
15 Marti-Renom, M. A.; Stuart, A.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291.   DOI   ScienceOn
16 Lee, J. Y.; Kim, Y. M. Bull. Korean Chem. Soc. 2005, 26, 1695- 1700.   DOI
17 Bandziluis, R. J.; Swanson, M. S.; Dreyfuss, G. Genes Dev. 1989, 3, 431-437.   DOI
18 McLauchlin, J. J. Appl. Bacteriol. 1987, 63, 1-11.   DOI
19 Burd, C. G.; Dreyfuss, G. Science 1994, 265, 615-621.   DOI
20 Schindler, T.; Graumann, P. L.; Perl, D.; Ma, S.; Schmid, F. X.; Marahiel, M. A. J. Biol. Chem. 1999, 274, 3407-3413.   DOI
21 Zeeb, M.; Max, K. E. A.; Weininger, U.; Low, C.; Sticht, H.; Balbach, J. Nucleic Acids Research 2006, 34, 4561-4571.   DOI
22 Schindler, T.; Herrler, M.; Marahiel, M. A.; Schmid, F. X. Nature Struct. Biol. 1995, 2, 663-673.   DOI
23 Lopez, M. M.; Makhatadze G. I. Biochem. Biophys. Acta 2000, 1479, 196-202.   DOI
24 Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism; Wiley-VCH: 2000; pp 612-614.
25 Graumann, P.; Schroder, K.; Schmid, R.; Marahiel, M. A. J. Bacteriol. 1996, 178, 4611-4619.
26 Phadatare, S.; Alsina, J.; Inouye, M. Current Opinion in Microbiology 1999, 2, 175-180.   DOI
27 Lopez, M. M.; Yutani, K.; Makhatadze, G. I. J. Biol. Chem. 1999, 274, 33601-33608.   DOI
28 Lopez, M. M.; Yutani, K.; Makhatadze, G. I. J. Biol. Chem. 2001, 276, 15511-15518.   DOI
29 Zeeb, M.; Balbach, J. Prot. Sci. 2003, 12, 112-123.   DOI
30 Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. FEBS Journal 2007, 274, 1265-1279.   DOI
31 Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. J. Mol. Biol. 2006, 360, 702-714.   DOI