DOI QR코드

DOI QR Code

Anti-inflammatory and Anti-bacterial Constituents from the Extracts of Daucus carota var. sativa Aerial Parts

당근 지상부 추출물 유래 항염 및 항균 활성 성분

  • Kim, Jung Eun (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Jo, Yeon Jeong (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Lee, Nam Ho (Department of Chemistry and Cosmetics, Jeju National University)
  • 김정은 (제주대학교 화학.코스메틱스학과) ;
  • 조연정 (제주대학교 화학.코스메틱스학과) ;
  • 이남호 (제주대학교 화학.코스메틱스학과)
  • Received : 2018.10.16
  • Accepted : 2018.11.13
  • Published : 2018.12.30

Abstract

In this study, we investigated anti-inflammatory and anti-bacterial constituents from Daucus carota var. sativa (carrot) areal parts. For the extract and solvent fractions, the anti-inflammatory activities were examined by measuring the nitric oxide (NO) production using LPS-stimulated RAW 264.7 cells. Among them, the ethyl acetate (EtOAc) fraction decreased the NO level in a dose-dependent manner. To elucidate further anti-inflammatory mechanisms, EtOAc fraction was evaluated by estimating their effects on the production of prostaglandin $E_2$ and pro-inflammatory cytokines as well as on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). As a result, the EtOAc fraction was determined to inhibit the production of $PGE_2$, IL-$1{\beta}$, IL-6 and reduce the iNOS, COX-2 protein expression. Upon the anti-bacterial tests using Staphylococcus epidermidis and Propionibacterium acnes, n-hexane (Hex) and EtOAc fractions showed the most potent activities. Three phytochemicals were isolated form the EtOAc fraction; diosmetin (1), diosmin (2), cynaroside (3). The chemical structures of the isolated compounds were elucidated based on the spectroscopic data including $^1H$ and $^{13}C$ NMR spectra, as well as comparison of the data to the literatures. Anti-inflammatory and anti-bacterial effects were studied for the isolates. All of the compounds (1 - 3) decreased the NO production, effectively. Also, compound 3 showed anti-bacterial activity on P. acnes. Based on these results, D. carota var. sativa extract could be potentially applicable as anti-inflammatory and anti-bacterial ingredients in cosmetic formulations.

본 연구에서는 당근 지상부 추출물 및 용매 분획물의 항염, 항균 활성을 확인하고 유효성분을 분리하여 화학구조를 동정하였다. 당근 지상부 에탄올 추출물 및 용매 분획물의 항염 활성을 측정하기 위해 LPS로 자극된 RAW 264.7 세포를 이용하여 NO 생성 억제 활성을 확인하였다. 그 중 에틸아세테이트 분획물이 NO의 생성을 농도 의존적으로 감소시키는 효과가 나타났고, 추가적인 항염 기전 연구를 위해 에틸아세테이트 분획물에 대해 $PGE_2$, 전염증성 사이토카인의 생성량 및 iNOS, COX-2 단백질의 발현량을 측정하였다. 그 결과, 에틸아세테이트 분획물이 $PGE_2$, IL-$1{\beta}$, IL-6의 생성을 감소시키고, iNOS, COX-2 단백질의 발현도 억제 시키는 효과가 있음을 확인하였다. 또한 표피포도상구균과 여드름균을 이용한 활성 실험 결과, 헥산 및 에틸아세테이트 분획물에서 항균 활성이 나타났다. 이와 같은 결과를 바탕으로 에틸아세테이트 분획물에 대해 컬럼 크로마토그래피를 수행하여 3개의 화합물을 분리하였으며, $^1H$$^{13}C$ NMR 데이터 분석과 문헌을 통하여 화학구조를 동정하였다; diosmetin (1), disomin (2), cynaroside (3). 분리된 화합물 1-3에 대해 항염 및 항균 활성을 측정하였으며, 그 결과 화합물 1-3 모두 NO의 생성을 저해시키는 효과가 있음을 확인하였다. 또한 화합물 3은 여드름균에 대해 항균 활성이 우수하였다. 이상의 연구 결과를 바탕으로 당근 지상부 추출물을 이용한 항염 및 항균 효과를 갖는 천연 화장품 소재로의 개발이 가능할 것이라 사료된다.

Keywords

HJPHBN_2018_v44n4_427_f0001.png 이미지

Figure 1. Effects of extract, solvent fractions (A) and EtOAc fraction (B) from D. carota var. sativa on NO production in LPS-induced RAW 264.7 cells. The cells were stimulated with 1 μg/mL of LPS only, or with LPS plus D. carota var. sativa extract and solvent fractions for 24 h. NO production was determined by the Griess reagent method. Cell viability was determined after 24 h culture of cells stimulated with LPS (1 μg/mL) in the presence of D. carota var. sativa. The data represent the mean ± SD of triplicate experiments (*p < 0.05, **p < 0.01).

HJPHBN_2018_v44n4_427_f0002.png 이미지

Figure 2. Effects of EtOAc fraction from D. carota var. sativa on production of PGE2, TNF-α, IL-1β and IL-6 in LPS-induced RAW 264.7 cells. The cells were stimulated with 1 μg/mL of LPS only, or with LPS plus EtOAc fraction for 24 h. PGE2, TNF-α, IL-1β and IL-6 produced and released into the culture medium was assayed using the ELISA method. The data represent the mean ±SD of triplicate experiments (*p < 0.05, **p < 0.01).

HJPHBN_2018_v44n4_427_f0003.png 이미지

Figure 3. Effects of EtOAc fraction from D. carota var. sativa on levels of iNOS and COX-2 protein in LPS-induced RAW 264.7 cells. The cells were stimulated with 1 μg/mL of LPS only, or with LPS plus EtOAc fraction for 24 h. Whole cell lysates (20 μg) were prepared and the protein was subjected to 10% SDS-PAGE; expression of iNOS, COX-2 and β-actin were determined by western blotting. β-action served as a loading control.

HJPHBN_2018_v44n4_427_f0004.png 이미지

Figure 4. Isolated compounds 1-3 from D. carota var. sativa aerial parts.

HJPHBN_2018_v44n4_427_f0005.png 이미지

Figure 5. Effects of isolated compounds 1-3 from D. carota var. sativa on NO production in LPS-induced RAW 264.7 cells. The cells were stimulated with 1 μg/mL of LPS only, or with LPS plus isolated compounds 1-3 for 24 h. NO production was determined by the Griess reagent method. Cell viability was determined after 24 h culture of cells stimulated with LPS (1 μg/mL) in the presence of isolated compounds 1-3. The data represent the mean ± SD of triplicate experiments (*p < 0.05, **p < 0.01).

Table 1. Anti-bacterial Activities of D. carota var. sativa

HJPHBN_2018_v44n4_427_t0001.png 이미지

Table 2. MIC and MBC Values of D. carota var. sativa

HJPHBN_2018_v44n4_427_t0002.png 이미지

Table 3. MIC and MBC Values of Isolated Compounds 1-3 from D. carota var. sativa

HJPHBN_2018_v44n4_427_t0003.png 이미지

References

  1. H. S. Lee and M. S. Shin, Antimicrobial effects of Luffa cylindrica extract against 4 skin microorganisms, J. Kor. Soc. Cosm., 21, 471 (2015).
  2. H. Jung, Master's Thesis Dissertation, Chung-Ang Univ., Seoul, Korea (2011).
  3. J. C. Harper, An update on the pathogenesis and management of acne vulgaris, J. Am. Acad. Dermatol., 51, 36 (2004). https://doi.org/10.1016/j.jaad.2004.01.023
  4. D. M. Thiboutot, Acne. an overview of clinical research findings, Dermatol. Clin., 15, 97 (1997). https://doi.org/10.1016/S0733-8635(05)70418-6
  5. S. Nishijima, I. Kurokawa, N. Katoh, and K. Watanabe, The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions, J. Dermatol., 27, 318 (2000). https://doi.org/10.1111/j.1346-8138.2000.tb02174.x
  6. A. Koreck, A. Pivarcsi, A. Dobozy, and L. Kemeny, The role of innate immunity in the pathogenesis of acne, Dermatology, 206, 96 (2003). https://doi.org/10.1159/000068476
  7. H. S. Kim, Master's Thesis Dissertation, Konkuk Univ., Seoul, Korea (2011).
  8. M. S. Kang, H. J. Oh, H. C. Lee, and J. S Oh, Isolation and identification of lactic acid bacteria inhibiting the proliferation of Propionibacterium acnes and Staphylococcus epidermidis, Journal of Bacteriology and Virology, 39, 11 (2009). https://doi.org/10.4167/jbv.2009.39.1.11
  9. J. Y. Choi, S. Y. Song, and H. H. Lee, Antibacterial and anti-inflammatory activity of Corni fructus ethanol extract in Propionibacterium acnes, Kor. J. Aesthet. Cosmetol., 13, 623 (2015).
  10. D. H. Kim, S. J. Park, J. Y. Jung, S. C. Kim, and S. H. Byun, Anti-inflammatory effects of the aqueous extract of Hwangnyenhaedoktang in LPS-activated macrophage cells, Korean J. Herbol., 24, 39 (2009).
  11. M. L. McDaniel, G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett, Cytokines and nitric oxides in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med., 211, 24 (1996). https://doi.org/10.3181/00379727-211-43950D
  12. P. J. Bames and F. Y. Liew, Nitric oxide and asthmatic inflammation, Immunol. Today, 16, 128 (1995). https://doi.org/10.1016/0167-5699(95)80128-6
  13. T. J. Guzik, R. Korbut, and T. Adamek-guzik, Nitric oxide and superoxide in inflammation and immune regulation, J. Physiol Pharmacol., 54, 469 (2003).
  14. D. Bishop-Bailey, S. Calatayud, T. D. Warner, T. Hla, and J. A. Mitchell, Prostaglandins and the regulation of tumor growth, J. Environ. Pathol. Tox. Oncol., 21, 93 (2002).
  15. Y. Liu, C. Zhang, S. Wei, H. Cui, and H. Huang, Compounds from the subterranean part of Johnsongrass and their allelopathic potential, Weed Biol. Manag., 11, 160 (2011). https://doi.org/10.1111/j.1445-6664.2011.00416.x
  16. M. M. El-Domiaty, M. Wink, M. M. A. Aal, M. M. Abou-Hashem, and R. H. Abd-Alla, Antihepatotoxic activity and chemical constituents of Buddleja asiatica Lour, Z. Naturforsch., 64, 11 (2009).
  17. S. Shrestha, D. Y. Lee, J. H. Part, J. G. Cho, W. D. Seo, H. C. Kang, Y. J. Jeon, S. W. Yeon, M. H. Bang, and N. I. Baek, Flavonoid glycosides from the fruit of Rhus parviflora and inhibition of cyclin dependent kinases by hyperin, J. Korean Soc. Appl. Biol. Chem., 55, 689 (2012). https://doi.org/10.1007/s13765-012-2133-2
  18. N. Y. Ko, Master's Thesis Dissertation, Seoul National Univ., Seoul, Korea (2011).
  19. M. Comalada, I. Ballester, E. Bailon, S. Sierra, J. Xaus, J. Galvez, F. Sanchez de Medina, and A. Zarzuelo, Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship, Biochem. Pharmacol., 72, 1010 (2006). https://doi.org/10.1016/j.bcp.2006.07.016
  20. C. M. Park and Y. S. Song, Luteolin and loteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of $NF-{\kappa}B/AP-1/PI3K-AKt$ signaling cascades in RAW 264.7 cells, Nutr. Res. Pract., 7, 423 (2013). https://doi.org/10.4162/nrp.2013.7.6.423