Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.2.139

Simultaneous Quantitative Analysis of Flavonoids Isolated from the Leaves of Diospyros kaki  

Kim, Ga-Ram (College of Pharmacy, Keimyung University)
Kim, Eun-Nam (College of Pharmacy, Keimyung University)
Jeong, Gil-Saeng (College of Pharmacy, Keimyung University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.2, 2020 , pp. 139-145 More about this Journal
Abstract
The leaves of Diospyros kaki Thunb. were used to treat heart disease and hypotension in traditionally East Asia. The purpose of this study is to simultaneously quantitiative analyze the content of flavonoids in leaves of D. kaki. The isolated flavonoids from the leaves of D. kaki, and the structure of the isolated flavonoids were analyzed based on 1H and 13C NMR spectrum compared to literature data. Simultaneous quantitative analysis of the isolated flavonoids was validated using high performance liquid chromatography (HPLC). Results showed that the calibration curves of the flavonoid compounds were confirmed that they have a large linearity with a correlation coefficient (R2) of 0.99. In the intra-day and inter-day analysis, accuracy and precision of five compounds were measured that accuracy was 94.39 to 114.47% and precision was less than 3.00%. Content analysis showed hyperoside (1.30 ± 0.09%), astragalin (0.81 ± 0.06%), trifoline (1.58 ± 0.07%), quercetin (0.13 ± 0.02%) and kaempferol (1.33 ± 0.25%).
Keywords
HPLC; Flavonoid; Quantitative analysis; Diospyros kaki Thunb.;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, J. H., Park, Y. J., Jo, N. S., Kim, D. K., Kim, S. H. and Shin, T. Y. (2014) Acute oral toxicity of the bark of Diospyros kaki in mice. Kor. J. Pharmacogn. 45: 181-185.
2 Chen, G., Xue, J., Xu, S. X. and Zhang, R. Q. (2007) Chemical constituents of the leaves of Diospyros kaki and their cytotoxic effects. J. Asian Nat. Prod. Res. 9: 347-353.   DOI
3 Hossain, A., Moon, H. K. and Kim, J. K. (2018) Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Sci. Biotechnol. 27: 177-184.   DOI
4 Xie, C., Xie, Z., Xu, X. and Yang, D. (2015) Persimmon (Diospyros kaki L.) leaves: A review on traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol. 163: 229-240.   DOI
5 Funayama, S. and Hikino, H. (1979) Hypotensive principles of Diospyros kaki leaves. Chem. Pharm. Bull. 27: 2865-2868.   DOI
6 Hwang, Y. H., Ha, H. I., Kim, R. J., Cho, C. W., Song, Y. R., Hong, H. D. and Kim, T. S. (2018) Anti-osteoporotic effects of polysaccharides isolated from persimmon leaves via osteoclastogenesis inhibition. Nutrients 10: 901.   DOI
7 Sakanaka, S., Tachibana, Y. and Okada, Y. (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food chem. 89: 569-575.   DOI
8 Attar, A. and Yapaoz, M. A. (2018) Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy. Prep. Biochem. Biotechnol. 48: 629-634.   DOI
9 Huang, S. W., Wang, W., Zhang, M. Y., Liu, Q. B., Luo, S. Y., Peng, Y., Sun, B., Wu, D. L. and Song, S. J. (2016) The effect of ethyl acetate extract from persimmon leaves on Alzheimer's disease and its underlying mechanism. Phytomedicine 23: 694-704.   DOI
10 Hoang, M. H., Jia, Y., Lee, J. H., Kim, Y. J. and Lee, S. J. (2019) Kaempferol reduces hepatic triglyceride accumulation by inhibiting Akt. J. Food Biochem. 43: 13034.
11 Abedini, A., Roumy, V., Mahieux, S., Biabiany, M., Standaert-Vitse, A., Riviere, C., Sahpaz, S., Bailleul, F., Neut, C. and Hennebelle, T. (2013) Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evid. Based Complement Alternat. Med. 2013: 1-11.
12 Fatemeh, G. H. and Masoud, S. D. (2017) Isolation and identification of astragalin and 2-methoxy tyrosol from the bulbs of Allium paradoxum. J. Herbmed. Pharmacol. 6: 114-118.
13 Lavoie, S., Cote, I., Pichette, A., Gauthier, C., Ouellet, M., Nagau-Lavoie, F., Mshvildadze, V. and Legault, J. (2017) Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement Altern. Med. 17: 123.   DOI
14 Roh, H. J., Noh, H. J., Na, C. S., Kim, C. S., Kim, K. H., Hong, C. Y. and Lee, K. R. (2015) Phenolic compounds from the leaves of Stewartia pseudocamellia Maxim. and their whitening activities. Biomol. Ther. 23: 283-289.   DOI
15 Luyen, B. T. T., Thao, N. P., Tai, B. H., Dat, L. D., Kim, J. E., Yang, S. Y., Kwon, S. U., Lee, Y. M. and Y. H. (2015) Soluble epoxide hydrolase inhibitory activity from Euphorbia supina rafin. Nat. Prod. 21: 176-184.
16 Fan, H. H., Zhu, L. B., Li, T., Zhu, H., Wang, Y. N., Hu, B. L., Huang, C. P., Zhu, J. H. and Zhang, X. (2017) Hyperoside inhibits lipopolysaccharide-induced inflammatory responses in microglial cells via p38 and NF-${\kappa}B$ pathways. Int. Immunopharmacol. 50: 14-21.   DOI
17 Sun, L., Yu, D., Wu, Z., Wang, C., Yu, L., Wei, A. and Wang, D. (2019) Comparative transcriptome analysis and expression of genes reveal the biosynthesis and accumulation patterns of key flavonoids in different varieties of Zanthoxylum bungeanum leaves. Food Chem. 67: 13258-13268.   DOI
18 Shang, Y. Y., Ma, Y. J., Zhang, L., Wang. L. J., Wu. X. F. and Liu, X. P. (2018) Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. Neuroreport. 29: 564-569.   DOI
19 Kwon, S. H., Lee, S. R., Park, Y. J., Ra, M. J., Lee, Y. J., Pang, C. H. and Kim, K. H. (2019) Suppression of 6-hydroxydopamine-induced oxidative stress by hyperoside via activation of Nrf2/HO-1 signaling in dopaminergic neurons. Int. J. Mol. Sci. 20: 5832.   DOI
20 Oh, H. A., Han, N. R., Kim, M. J., Kim, H. M. and Jeong, H. J. (2013) Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur. J. Pharmacol. 718: 48-56.   DOI
21 Kim, Y. H., Choi, Y. J., Kang, M. K., Park, S. H., Antika, L. D., Lee, E. J., Kim, D. Y. and Kang, Y. H. (2017) Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. Food Chem. 65: 836-845.   DOI
22 Li, F., Liang D., Yang, Z., Wang, T., Wang, W., Song, X. Guo, M., Zhou, E., Li, D., Cao, Y. and Zhang, N. (2013) Astragalin suppresses inflammatory responses via down-regulation of NF-${\kappa}B$ signaling pathway in lipopolysaccharideinduced mastitis in a murine model. Int. Immunopharmacol. 17: 478-482.   DOI
23 Vasquez-Espinal, A., Yanez, O., Osorio, E., Areche, C., Garcia-Beltran, O., Ruiz, L. M., Cassels, B. K. and Tiznado, W. (2019) Theoretical study of the antioxidant activity of quercetin oxidation products. Front. Chem. 7: 818.   DOI
24 Kim, M. J., Kwon, S. B., Kim, M. S., Jin, S. W., Ryu, H. W., Oh, S. R. and Yoon, D. Y. (2016) Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine 23: 998-1004.   DOI
25 Tang, J., Diao, P., Shu, X., Li, L. and Xiong, L. (2019) Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: in vitro assessment and a theoretical model. Biomed. Res. Int. 2019: 1-8.
26 Singh, R., Singh, B., Singh, S., Kumar, N., Kumar, S. and Arora, S. (2008) Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol. In Vitro 22: 1965-1970.   DOI
27 Chen, X., Qian, J., Wang, L., Li, J., Zhao, Y., Han, J., Khan, Z., Chen, X., Wang, J. and Liang, G. (2018) Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 60: 83-94.   DOI
28 Boukes, G. J. and van de Venter, M. (2016) The apoptotic and autophagic properties of two natural occurring prodrugs, hyperoside and hypoxoside, against pancreatic cancer cell lines. Biomed. Pharmacother. 83: 617-626.   DOI
29 Guo, W., Yu, H., Zhang, L., Chen, X., Liu, Y., Wang, Y. and Zhang, Y. (2019) Effect of hyperoside on cervical cancer cells and transcriptome analysis of differentially expressed genes. Cancer Cell Int. 19: 235.   DOI
30 Zhang, J., Yin, J., Zhao, D., Wang, C., Zhang, Y., Wang, Y. and Li, T. (2019) Therapeutic effect and mechanism of action of quercetin in a rat model of osteoarthritis. J. Int. Med. Res. 0: 1-9.
31 Cao, H., Jia, Q., Yan, L., Chen, C., Xing, S. and Shen, D. (2019) Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDLinduced raw264.7 macrophage foam cells. Int. J. Mol. Sci. 20: 6093.   DOI