• Title/Summary/Keyword: 17자유도

Search Result 420, Processing Time 0.023 seconds

Free Vibration Analysis of Rectangular Plate with Multiple Circular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 원형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1086-1092
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple circular holes. On the contrary to the case of rectangular plate with multiple rectangular holes, it is very difficult to perform qualitative analysis on natural vibration characteristics because of geometrical inconsistency. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a circular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal (CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.185-188
    • /
    • 2000
  • The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

  • PDF

Free Vibration Analysis of Rectangular Plate with Multiple Rectangular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.881-887
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple rectangular holes. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a rectangular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Free Vibration Analysis of Clamped Plates with Arbitrary Shapes Using Series Functions (급수 함수를 이용한 임의 형상 고정단 평판의 자유 진동 해석)

  • Kang, Sang-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.531-538
    • /
    • 2007
  • A new method for free nitration analysis using series functions is proposed to obtain the eigenvalues of arbitrarily shaped, polygonal plates with clamped edges. Since a general solution used in the method satisfies the equation of motion for the transverse vibration of a plate, the method offers very accurate eigenvalues, compared to FEM or BEM results. In addition, the method can minimize the amount of numerical calculation because it has the advantage of not needing to divide the plate of interest. Two case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed method are compared to those by FEM (NASTRAN) or another analytical method.

Forearm Mechanism Inspired by Ligamentous Structure and Its Mobility Analysis (인대 구조에서 기인한 전완 메커니즘과 자유도 해석)

  • Lee, Geon;Lee, Ho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.209-215
    • /
    • 2022
  • In this paper, a forearm Mechanism design inspired by ligamentous structure of the human body is proposed. The proposed mechanism consists of four rigid bodies and fourteen wires without any mechanical joints. Actually, the mechanism is based on the concept of the tensegrity structure. Therefore, the proposed mechanism has inherently compliant characteristics due to the flexibility of the wires composing the structure. Rigid bodies and wires of the mechanism mimic bones and major ligaments in the forearm of the human. The proposed mechanism is classified as one of the interconnected hybrid flexure systems. The analysis method of the degree of freedom (DOF) of the proposed mechanism is also introduced through analyzing technique of the interconnected hybrid flexure systems, in this paper. Ultimately, the proposed mechanism, whose structure is complicated with rigid bodies and wires, mathematically drives that it has 3-DOFs.

Adaptive Air-Particle Method for Vortex Effects of Water in Free Surface (자유표면내 물의 와류효과를 위한 적응적 공기 입자 기법)

  • Kim, Jong-Hyun;Lee, Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • We propose an efficient method to express water spray effects by adaptively modeling air particles in particle-based water simulation. In real world, water and air continuously interacts with each other around free surfaces and this phenomenon is commonly observed in waterfall or sea with rough waves. Due to thin spray water, the interfaces between water and air become vague and the interactions between them lead to heavy vortex phenomenon. To express this phenomenon, we propose methods of 1) generating adaptive air cell in particle-based water simulation, 2) expressing water spray effects by creating and evolving air particles in the adaptive air cells, and 3) guaranteeing robustness of simulation by solving drifting problem occurred when adjacent air particles are insufficient. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results.

Design Optimization Method of Inertial Parameters of Serial Manipulators for Improving the Energy Efficiency (에너지 효율 향상을 위한 직렬형 머니퓰레이터의 관성 파라미터 설계 최적화 방법)

  • Hwang, Soon-Woong;Kim, Hyeon-Guk;Choi, Youn-Sung;Shin, Kyoo-Sik;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.395-402
    • /
    • 2016
  • This paper presents a design methodology for improving the energy efficiency by considering the inertial properties of serial manipulators. This method employed is to put the inertia matrix, which has a critical effect on the equation of motion, into the constraints of the optimization problem. Through the optimization process, we propose a design algorithm that can double-check whether the optimized parameters satisfy the required performance or not by using an auxiliary index associated with the inertia and energy. Using this design algorithm, we were able to improve the energy efficiency by minimizing the torque. We applied this method to a 3 degrees of freedom serial manipulator and simulated it.

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Analysis of the Critical Speed and Hunting Phenomenon of a High Speed Train (고속전철의 임계속도와 헌팅현상 해석)

  • Song, Ki-Seok;Koo, Ja-Choon;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • Contact between wheel and rail leads to the creep phenomenon. Linear creep theory, assuming linear increase in the creep force vs creep, results in a critical speed at which the vibration of a railway vehicle goes to infinity. However, the actual creep force converges to a limited value, so that the vibration of a railway vehicle cannot increase indefinitely. In this study, the dynamics of a railway vehicle is investigated with a 6 DOF bogie model includingthe nonlinear creep curves of Vermeulen, Polach, and a newly calculated creep curve with strip theory. Strip theory considers the profiles of the wheel and rail. The results show that the vibration of a railway vehicle results in a limit-cycle over a specific running speed, and this limit-cycle becomes smaller as the slope of the creep-curve steepens. Moreover, a hunting phenomenon is caused due to flange contact, which restricts the magnitude of the limit-cycle.