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Parametric Studies of Flexural Free Vibrations
of Circular Strip Foundations with Various End Constraints
Resting on Pasternak Soil
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ABSTRACT

This paper deals with the flexural free vibrations of circular strip foundation with the variable
breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is
symmetric about the mid—arc. Differential equations governing flexural free vibrations of such strip
foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is
considered. Effects of the rotatory and shear deformation are included in the governing equations.
Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In
the numerical examples, the hinged—hinged, hinged—clamped and clamped—clamped end constraints
are considered. Four lowest frequency parameters accompanied with their corresponding mode
shapes are reported and parametric studies between frequency parameters and various system
parameters are investigated.
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the most important structural subjects in the
structural engineering, much study concerning
the soil-structure interactions had been carried
out. Structures related to the soil-structure inter-
actions should be modeled as structures resting
on the elastic foundation. One of typical struc-
tures related to the soil-structure interactions is
the strip foundation which is basically defined as
the beam/strip rested on the elastic soil.

During the past few decades, dynamic studies
on the strip foundations have been frequently
investigated by many researchers. References
and their citations include the governing
equations and the significant historical literature
on the free vibrations of beams resting on
elastic soils, i.e. the strip foundations. Briefly,
such works included following studies: works
dealt with the Winkler soil were discussed by

n )

Volterra”, Panayotounakos and Theocaris™,

Wang and Brannen®, Eisenberger et. al.““,
Issa®, Kukla®, DeRosa” and Lee et. al.®;
dealt with the
researched by Wang and Stephens(g), Eisenberger
and Clastomik(m), Issa et. al.(“), Yokohama(m,

. . 4.
Franciosi and Masi™ ab

works Pasternak soil were

and Lee ™ and works
related to the present study, especially concerning
the rotatory inertia and shear deformation, were
studied by Wang and Stephens(g), Issa et. al.'?,
12 and Lee et. al."?.

the most objective structures in

Yokoyama

However,
such studies were the uniform members even
though the real structural systems consist of
many non-uniform members. Actually, non-
uniform members as well as uniform ones are
often erected in civil engineering works. Such
typical structures include the circular strip
foundation which supports various loadings like
the buildings, storages and mechanical machines.

At the present time, lack of studies on
dynamic problems related to circular strip
foundation on Pasternak soil is still found in the

literature. On the other hand, accurate pre-
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dictions of the natural frequencies accom-—

panied with the mode shapes are very
important in the design of structures, especially
when dynamic loads are subjected. Therefore,
there is a need to supplement the literature
with practical engineering data for designing the
foundation structures.

From these viewpoints, this paper aims to
dynamics of the

circular strip foundation and also to present

theoretically  investigate
practically engineering data for the design of
strip foundation. This paper deals with the free
vibration analysis of strips which have the solid
rectangular cross—section with variable breadth
and constant thickness, i.e. tapered circular
strip foundation. In this study, the elastic soil
which supports the strip is modeled as
Pasternak soil and the variable breadth of the
strips is assumed to be varied in the linear
functional fashion. Differential equations governing
the flexural, out-of-plane free vibrations of such
circular strip foundation are derived, in which
effects of the rotatory and shear deformation
are included although the warping of the
excluded. Also,
conditions of both the hinged and clamped ends

cross—section 1S boundary
are derived. Non-dimensional stress resultants
are formulated for presenting the mode shapes
in parallel with those of the deformations.
Governing differential equations are numerically
solved for obtaining the natural frequencies and
mode shapes. In the numerical examples, three
end constraints of hinged-hinged, hinged-
clamped and clamped-clamped are considered.
Effects of the rotatory inertia and elasticity
ratio on the natural frequencies are reported.
Four lowest natural frequencies according to
the variations of system parameters such as
subtended angle, breadth ratio, thickness ratio,
contact ratio and both foundation and shear
are reported. Also,

parameters, respectively,

typical mode shapes of both deformations and

28/A174 A9 35, 20074
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stress resultants are presented.

2. Circular Strip with Variable Breadth

In general, the cross-sectional shapes of strip
should be
rectangular cross—section is one of the most

foundation arbitrary, The solid
frequently used in the foundation engineering,
which is chosen in this study. Figure 1 shows
the horizontally circular curved strip with the
solid rectangular cross—section and its dimensions.
The radius and subtended angle are depicted as
£ and ¢, respectively. The typical point along
the center line of strip is defined by the polar
coordinates (p, &) in which @
from the radius of left end.

is measured

As shown in this figure, the thickness H of
the rectangular cross—section is constant along
the coordinate @, while the breadth B varies
with @. Breadths of both far ends(@=0 and
@=a) are B, and the breadth at the mid-arc
@=al/2) is B,.

For defining the wvariable breadth B, the
breadth ratio m and the thickness ratio n are
introduced as follows.

m=B_/B, 6
n=HIB, ©)

It is natural that the variation of breadth
should be arbitrary. In this study, the breadth

L3 [0 [CC]# H=rB,: constant
<« > <_ > = >

B, B
at 6=0 at@

Fig.1 Circular strip having rectangular cross—
section with variable breadth

B=mB,
at @=0/2

3
b
il
>
of
Ok
1o
o
I

B is varied in a linear functional fashion with
the coordinate @ and is symmetrical about the
mid-arc. The equation of B which is a function
of @ can now be expressed as follows.

B=Ba(cl+c2€)’ 0<f0<La 3

in which the coefficients ¢ and ¢, for
0<f0<Lal/2 are

e, =1 ¢,=Q/a)m-1) (4a,b)

»

and also the coefficients ¢ and €2 for
al2<8<Lqa are

c,=2m-1, ¢, =Q/a)1-m) (4c, d)

Using Egs. (1)~(4) gives the cross-sectional
properties of the area A4, second moment of
J of the
rectangular cross—section, which will be used

inertia J and torsional constant

for deriving the ordinary differential equations
later. The results are

A=BH=A4,(c, +c,0) ()
I=BH?/12=1 (c, +¢,0) 6
J=C,BH’ =41 (c, +c,0-0.63n) )

where A4, =nB} and I,=n’B!/12 are the
area and second moment of inertia of the
cross-section at the two far ends(¢=0 and
6 =a), respectively. In Eq.(7), the numerical
factor C, is given as C, =(1/3)(1-0.63H/B),
H /B <1 for the rectangular cross—section'?.
Note that when another functional fashion
rather than a linear functional one, eg. a
quadratic function, is chosen, Eq.(3) is merely
changed to the selected function and the

remaining procedure is the same.
3. Mathematical Model
3.1 Stress Resultants and Inertia Loadings

=8:/A 1748 A 93, 20073/837
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Shown strip

foundation, i.e. circular strip on an elastic soil

in Fig.2 is the circular
with the shear layer, namely Pasternak soil,
whose cross—sectional properties are already
defined in previous chapter. Each end is either
hinged or clamped. The dashed line is the
un—-deformed shape in the static state, while the
solid line is one of typical deformed shapes
caused by free vibration, which is called as
mode Deformation variables of the
vertical deflection, rotation due to pure bending,

shape.

shear distortion and twist angle are denoted by
v, ¥, B and 9, respectively. Depicted by R,
and R,
vertical and torsional reactions subjected to
contact surface between strip and soil, which

due to the Pasternak soil are the

are discussed in next section 3.2.

Stress resultants which consist of the shear
force @, bending moment M and torsional
moment T occur in the cross-section due to
deformations of v, ¥, B and #. The shear

force related to the shear distortion
B=vIp-yis
Q= fGAB= fGA(p™V' -y) ®

where ()=d/d6, [ is the shape factor of the
cross-section and G is the shear modulus of
elasticity of the strip material. In case of the

rectangular cross-section, the value of f is
0.833.

Static state - . R
N Deformed axis

W Hinged/
: clamped

N ;
o BN

Yo

Fig. 2 Circular strip foundation and its variables

The bending and torsional moments are

M=p 'ElI(¢-y") )
T=p"GJ(y+9¢" (10
where E is the modulus of elasticity of the

strip material.

When the strip is in a state of free vibration,
the strip element having mass is subjected to
inertia loadings. The free vibration is assumed
to be harmonic motion so each coordinate is
sin(w?), 1s the
is time. The two

proportional to where @
angular frequency and ¢
inertia loadings are flexural inertia force F,

and rotatory inertia Cw which are

F, =-yda’v an
C, =-rlo’y (12)
where 7 is the mass density of the strip

material.

3.2 Reactions of Foundation
In this paper, the soil foundation is assumed

to follow the hypothesis proposed by Winkler
and Pasternak. Figure3 shows the restoring
reactions of R, and Rr due to v and ¢,
respectively, at any coordinate @&. In this
B, already defined in Fig.1, is the
The vertical

reaction R, is caused by the vertical deflection

figure,
breadth of the cross—section..

V. The discrepancy of Vv between out—and
in-side extremes of the strip element is
obviously caused by ¢ under the assumption
that there is no bend along the radial direction.
As the result of this discrepancy, the elastic
soil has the torsional reaction Ry. It is evident
that the pressure of contact surface between
strip and soil is varied with r in a linear
fashion. Here, r is the coordinate in the radial

direction with the origin at the centroid of the

838/2 AT B =2 /A 17 A9 E, 2007
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cross—section depicted as o' in Fig. 3.
The relation between the pressure and
deflection of the foundation surface at r can

be expressed in the form

p(r.0) = Kz(r,0)~(S/a*)2"(r,6),
~B/2<r<+B/2

(13)

where p(r,0) and z(r,6) are the pressure and
deflection of the contact surface, and K is the
is the

shear modulus. Note that former term with K

modulus of subgrade reaction and S

was proposed by Winkler and later one with §
by Pasternak.
From Fig. 3, one can find that

2(r,@)=v—¢r, —B/2<r<+B/2 (14)

both and R; at
coordinate @ can now be calculated by using
Egs. (13) and (14) as follows.

Hence, reactions R,

R, = B{Kv—(S/p*WV"} (15)
R, =(B*12){K¢—(S/ p*)¢"} 16)

3.3 Dynamic Equilibrium Equations
A small element of the strip foundation shown

in Fig.4 defines the positive directions for the
three stress resultants, the three inertia loadings

Fig. 3 Reactions of foundation

ro

and the two soil reactions, in which each
dynamic quantity is treated as an equivalent
static one. The three equations for “dynamic

equilibrium” of the element are

p'Q'-F,—-R, =0 an
pM' -Q+p7'T+C,=0 (18)
p'M—-p'T'+R, =0 (19)

3.4 Governing Differential Equations
To facilitate the numerical studies and to

obtain the most general results for this class of
problem, the following non-dimensional system
parameters are defined.

n=vip (20)
b=B,/p 21
k=KB,p* (El,) 22)
s=SB,p* (EL) (23)
g=G/E 24)

where 7 is the normalized deflection, p is the
contact ratio between strip and soil at two far
ends, k is the foundation parameter, s is the
shear parameter and g is the elasticity ratio.
And the frequency parameter is defined as

Fig. 4 Loads on strip element

TASUSSEI=2H/A 1748 A 935, 20073/839
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C,=w,p*14, (EL) (25)

which
frequency @=®;, i=1234,...

is expressed in terms of the jth
where i is the
mode number.

The differential
out—of-plane vibrations of the strip foundation

are derived by

equations governing free,
using all the equations
mentioned above. First, the cross—sectional
substituted into the
resultants, inertia loadings and soil reactions,

properties are stress

respectively. Second, the first derivatives of ',
M and T’
resultants with the corresponding derivatives,

are obtained. Third, the stress

inertia loadings and soil reactions are then
substituted into the three equations of dynamic
system

equilibrium. Finally, non-dimensional

parameters are used. The results are
n"=edan' +e(k-CHhn+y'-ay} (26

v =e¢ 'n'+ay' +(e,a, —¢ " +e,CHy

, @7
+(ea, +1)¢' —a g

¢ =a,{~(1+ea,)y' +ea,(y +¢)
+ (1 + ka, )¢}

@8

where the coefficients in Eqgs. (26)~(28) are as
follows.

a, =—c,(c, +¢c,0)" (29a)
a, =1-0.63n(c, +c,0)™ (29b)
a, =(b> /112)(c, +¢c,0)* (29¢)
a, =(e,a, +sa,)™ (29d)
e, =n’b* /(12 fg) (29¢)
e, =-n’b*/12 (299
e, =4g (29¢)
e, =(1+es)" (29h)

840/8t2AZ TSI ES =2 T/A 174 A9 F, 20074

Note that the differential equations with both
k=0 and s=0 are applicable for the flexural,
out—of-plane free vibration of circular strip
without the soil.

Each end of the strip foundation is either
hinged or clamped. The boundary conditions for
the hinged end (8=0 or &=a) are given by

n=0 (30)
w'=0 (3D
$=0 (32)

in which Eq.{31) implies the bending moment
M is zero at the hinged end.

The boundary conditions for the clamped end
(8=0 or 6=a) are given by

n=0 (33)
w=0 (34)
$=0 (35)

implying that vertical deflection v and both
rotations ¥ and ¢ are zero.
For presenting the mode shapes of stress

resultants @, M and T as well as those of

deformation v, ¥ and #, the non-dimensional
stress resultants are formulated as follows.

O*=0/N(fGA,) =(c,; +c,0)n' - ) (36)
M*= Mp (EI )= (c, +c,0X¢-v") €1))

T*=Tp/(4GI,)={(c, +c,0) —0.63n}
x(y +¢")

(38

4. Numerical Examples

Since differential equations with the boundary
conditions are derived, frequency parameter C;
and both mode shapes of deformations 7;, V¥,
and &,, and stress resultants Q*, M™* and
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T*, can now be calculated for a given set of
system parameters which consists of end
constraint, subtended angle @, breadth ratio m,
thickness ratio #, contact ratio b, foundation
parameter k, shear parameter §, elasticity
ratio & and shape factor f (=0.833).

The numerical methods described by Lee et.
al.(m) are used to solve the differential equations.
First, the Runge-Kutta method is used to
integrate the differential Egs. (26)~(28) subjected
to the boundary conditions of Egs. (30)~(32) or

Egs. (33)~(35). From results of the Runge-Kutta
and &

accompanying with those first derivatives can

solutions, deformations of 7, V¥,

be obtained. Second, the determinant search
method combined with the Regula-Falsi method
is used to determine the eigenvalues C, of the
differential equations. Finally, mode shapes of
the stress resultants @%*, M™* and T* are
calculated by Eqgs. (36)~(38).

For executing the algorithm developed herein,
a FORTRAN computer program was written. As
the results of numerical analysis, the system
parameters such as «, m, n, b, k, s and &
are examined in the parametric studies for

calculating C; and mode shapes. Numerical
results given in Tables1, 2 and Figs. 5~10 are
now discussed.

Table 1 shows the effect of rotatory inertia
on C, (i=123,4) for the system parameters of
a=10, m=1.5, »n=0.3, b=0.2, £=5000, s=0.1
and g=0.4. Hereafter, all parameter values
including end constraint used in parametric
studies are given in tables and figures. When
the rotatory inertia is excluded, the coefficient
€ in Eq.(27) which is related to the rotatory
inertia is merely deleted. In Table 1, if rotatory
inertia is excluded, £; =0 and otherwise,
E, =1, The rotatory inertia always depresses
C, value. Hereafter, the rotatory inertia is
included in the numerical examples.

Table 2 shows the effect of elasticity ratio &
on C;. For the construction materials, the &
value approximately varies from 0.3 to 0.5. The
the g
increased. Even though the theoretically largest
value of g(=G/E) is 0.5, if the value of & is
assumed to be

C, value increases as value is

infinite, the effect of shear
deformation is neglected in the theory because
the shear distortion B expressed in Eq.(8)
must become zero and consequently, the total
rotation of the cross-section v'/p=w +f should
consist of only rotation ¥ due to bending.
Therefore, the C; value is overestimated if the
shear deformation is excluded in the mathematical
model for predicting the natural frequencies. In

Table 1 Effect of rotatory inertia on C;

End P Frequency parameter, C;
constraint R i=1 i=2 =3 i=4
Hinged - 0 | 7139 | 80.25 | 1100 | 1624

hinged 1 | 7131 | 7981 | 108.8 | 160.0

. 0 | 7218 | 8477 | 1196 | 1755
Hinged -
clamped 1 | 7208 | 8428 | 1182 | 1725
Clamped - | O | 7355 | 9041 | 1300 | 1889
clamped 1 | 7344 | 89.88 | 1285 | 1857

* a=1.0, m=15, n=03, b=0.2, k=5000, s =01 and &
=0.4

Table 2 Effect of elasticity ratio & on C;

Frequency parameter, C,

# i=1 i=2 i=3 i=4
0.30 72.07 84.08 117.0 169.1
0.35 72.08 84.20 117.7 171.0
0.40 72.08 84.28 118.2 172.5
0.45 72.09 84.35 118.6 173.6
0.50 72.09 84.40 119.0 174.5

*+ Hinged-clamped, @=1.0, m=1.5 n=3, p=0.2, k=5000
and §=0.1

TLFYUSSEIA=2WU/A 178 A 93, 20071/841
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conclusion, it is very important to include the
effect of shear deformation in the mathematical
model for free vibration problems as this study
does.

Figures5 to 10 show the frequency curves
which present the relationships between fre—
quency parameters C;(i=123,4) and system
parameters such as &, m, n, b, k and s. In

these figures, the value of elasticity ratio

g(=G/E) is considered as g=904 which
2000 - ——— -
- Hinged-clamped, m=1.5, n=0.3, b=0.2, k=5000,
$=0.1, g=0.4;i=1,2,3,4: From bottom to top
D ;
1500 — |
|

— L1 1 l_l_.,l S Y W X

o
o -

Fig.5 C; versus a curves

250 -
- Hinged-clamped, o=1., n=0.3, b=0.2, k=5000, s=0.1, g=0.4
=1,2,3,4: From bottom to top

100

T
|

2

L LA AL Bt B BN B R B

0.5

T E T T T

1 15 25

m
Fig.6 C; versus m curves

3
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to the typical

concrete materials which are frequently used in

approximately  corresponds
strip foundation materials. The selected values
of system parameters used in the numerical
examples presented in these figures are practically
acceptable in the foundation engineering.

Figure 5 shows the C, versus a curves in
which C; value decreases as « is increased. It
is fact that the decreasing rate of each
frequency curve is greater when the value of
«a 1s smaller.

Figure 6 shows relationships between C, and
m . The C, value decreases as the value of m
is increased. However, it is fact that the effect
of m on C; is very minor so that its effect is
negligible.

Figure 7 shows the C; versus n curves. The
C, value increases and reaches peak point and
then decreases as the value » is increased. The
effect » is more pronounced in the higher mode.

Figure 8 shows the C, versus p curves in
which the C; value increases and reaches peak
point and then decreases as the value p is
increased. The effect p is more pronounced in
the higher mode.

250 —

1

Clamped-clamped, & =1., m=1.5, b=0.2, k=5000, s=0.1,
g=04;i=1,2,3.4: From bottom to top

-

3 150 —
100 —| \\
1
, .\\
50 ﬂ[ T L L A L
0 0.2 04 06 08 1
n

Fig.7 C, versus n curves
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Fig.9 C, versus k curves

Figure 9 shows the relationships between C,
and k. The C, value increase as the value of
k is increased.

Table 3 shows the effect of s on C, in which
C; value increases as the value s is increased.
However, it is fact that the effect of s on C;
is very minor so that its effect is negligible.

Figure 10 shows the mode shapes of (a)
deformations of #, ¥ and ¢, and (b) stress
resultants of Q% A * and T*. From the mode
shapes presented in this figure, positions of the

Table 3 Effect of shear parameter s on C,

Frequency parameter, C,

° i=1 i=2 i=3 i=4
0.0 73.43 89.85 128.5 185.7
0.2 73.45 89.90 128.6 185.8
0.4 73.47 89.95 128.6 185.9
06 73.48 90.00 128.7 1859
0.8 73.50 90.05 128.8 186.0
1.0 73.52 90.10 128.9 186.1

+ Clamped-clamped, @=1.0, m=15 n=3, p=0.2 and k
=5000

Hinged-clamped, a=1, m=1.5, n=0.3, b=0.2, k=5000, s=0.1, g=0.4
NN RN
_ VAN

f TRTUTUON
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(a) Deformations (b) Stress resultants

Fig. 10 Mode shapes of hinged-clamped ends

maximum amplitudes and interior nodal points
for both deformations and stress resultants can
be fully understood. Hence, these kinds of
mode shapes can be used in designing strip
foundation especially when the dynamic loads
are subjected.

5. Experiment
circular strip foundation

having rectangular cross—section with variable
breadth was designed and

Laboratory-scale

tested for a

=2&/A17H A9E, 20073/843
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clamped-hinged ends. Materials of the curved
strip and foundation are aluminum and rubber,
respectively. The geometries, dimensions and

material properties of the specimen are: =70
p=03m, B,=0.03m, B,=0.039m, H
=0.006m, 7=2680kg/m’, G=2.6x10"N/m’, E
=6.89x10""N/m’, £=4x10°N/m’ and §=4.6x10’
N/m. Thestrip parameters of the specimen are:
a=1.22rad, m=13, »=02, b=0.1, £=0.38, %
=226, s=0.33 and /=0.833, with which the
frequency parameters C; were calculated. With
these values of C,, the corresponding frequencies
@, were calculated from Eq. (25). The predicted
natural frequencies for the experimental strip
=, /(27)=99.86 C=15.89C, Hz.

(a) a side view of the

degree,

foundation are F;
Figure 11 shows:
experimental set~up and (b) the modal analysis

Front view
Curved beam(/\lummug)\
Accelerometer A

N\
!_l I'I' \(

— Accelerometer B

/ _-lmpact hammer
Hinged/
A3 = clamped

Acryl
Granite Block

oSS

Top view

-Reference points{13

Specimen

Hinged/
clamped

(@
Accelerometer A ~ ™ Signal
inputs B analyzer
:
Computer N Printer
hard disk
b
Fig. 11 (a) Experimental set-up and (b) modal analysis
system
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system used to measure C; for the strip
foundation in out-of-plane free vibration. The
end of a model strip was either clamped
between the steel blocks or fastened to a steel
hinge, both of which were anchored with bolts
to a 5cm thick Acryl slab glued rubber pad of
medium stiffness.

This experimental design provided low heave
and rotational frequencies for the granite block,
and offered vibration isolation at the ends. This
design minimized the effect of vibration on the
end supports so that the experimental fre-
quencies of the strip itself could be identified
easily.

In the experiments, 13 reference points were
evenly spaced along the top of each strip. As
shown in Fig. 11(a), a miniature piezoelectric
accelerometer, A, was affixed to the underside
of the strip at the reference point nearest to
one end.

In a typical experiment, each reference point
was struck vertically at the top of the strip
with an impact hammer which was fitted with a
miniature accelerometer, B. The record of the
time history of the out-of-plane response for
both accelerometers A and B was obtained. All
data were received by a signal analyzer(Model
SD390, Scientific-Atlanta Corp.) and processed
through a minicomputer using a fast Fourier
transform(FFT) analyzer as shown in Fig. 11(b).
For data collected for a hammer blow at the
location of accelerometer A, the software was
used to calculate the frequency spectrum. The
peaks of this spectrum occur at the free
vibration frequencies of the strip foundation.
The reader should be referred to the work of
Ewins"® for more details on the methods of
data processing.

The lowest six numerical and experimental
results of C; and ¥ are summarized in Table 4.

The frequency spectrum for clamped-hinged
ends is presented in Fig. 12. The software gave



Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End...

Table 4 Comparisons of between theory and experi-
ment (hinged-clamped ends)

. Theory Experiment | neviation
! C, |Fun | Faw %)

1 9.888 157 141 10.19

2 30.59 485 455 6.19

3 64.68 1026 | (923)1112 8.38

4 110.9 1760 1617 8.13

5 169.3 2639 2368 11.93

6 239.1 3799 3275 13.79

* Deviation(%)=(Theory-Experiment)/Theory><100

Clamped-hinged ends

)\ ,/ﬁ\.‘v/w /\\ »

Spectral densty(arbitrary unit)
_._—-_;:’:
:“

g 1000 2000 3000 4000 5000
Hz

Fig. 12 Free vibration acceleration spectrum for
clamped-hinged ends

a listing of the six lowest frequencies corres—
ponding to the first six peaks of each spectrum.

These results, which were reproduced to
within about 2% in repeated tests, are the
listed in Tabled4,
which shows excellent agreement between the

two results obtained from the

experimental frequencies
theory and
experiments,

The percentage deviations between theories
and experiments in the results average about
9.76 %.
theories and numerical method were validated.

From this experimental result, the

6. Concluding Remarks

Differential equations governing the flexural
free vibrations of circular strip foundation with

the variable breadth are derived, in which the
elastic soil is modeled as Pasternak soil. The
effects of the rotatory and shear deformation
are included. Differential equations are solved
numerically for calculating the frequency para-
meters and mode shapes. In the numerical
examples, four lowest frequency parameters are
calculated. The rotatory inertia always depresses
the frequency parameter. The frequency para-
meter increases as the value of elasticity ratio
is increased. Effects of system parameters such
breadth ratio, thickness
ratio, contact ratio, and both foundation and shear

as subtended angle,

parameters on the frequency parameters are
investigated. The typical mode shapes of stress
resultants as well as deformations are presented.
Both theories and numerical methods developed
herein are robust in the practical ranges of
various System parameters. It is expected that
the results of this study can be used in
designing circular strip foundations especially
when the dynamic loads are subjected.
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