• Title/Summary/Keyword: 16s rRNA gene

Search Result 1,145, Processing Time 0.033 seconds

Bacteriological Study about the Death of Cultured Doctor Fish, Garra rufa in the Aquarium

  • Lee, Ji-Yoon;Gang, Nam-I;You, Jin-Sol;Ko, Chang-Yong;Lee, Ki-Won;Han, Won-Min;Kim, Eunheui
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Since April 2012, doctor fish in the breeding tank and in the quarantine tank in Hanwha Aquaplanet Yeosu Aquarium have been dying, accompanied by diffuse bleeding around the mouth, in the chin, and at the bottom of the abdomen. In this study, the cause of death would be examined through the bacteriological study of doctor fish and the rearing water quality in the aquarium. The water quality and the bacterial counts of the rearing water in the exhibit tank and in the quarantine tank were analyzed once a week, starting from August to November 2014. Water quality was measured based on the following data: temperature was in the range of 24.5~26.8℃, pH at 6.77~7.94, DO at 6.15~8.61 ppm, ammonia at 0~0.93 ppm, nitrite at 0.009~0.075 ppm, and nitrate at 1.1~40.9 ppm. Studies revealed that the differences in these water quality factors were not related to the death of doctor fish. Bacterial counts in the rearing waters of Garra rufa slightly increased to 103~104 CFU/ml, just before the death of the doctor fish. Twelve strains of bacteria were isolated from the dead fish and rearing waters. The isolates were identified as Aeromonas veronii, Citrobacter freundii, Pseudorhodoferax aquiterrae, Shewanella putrefaciens, and Vibrio anguillarum on the basis of 16S rRNA gene sequences. The most dominant species was C. freundii, which showed medium sensitivity to florfenicol and norfloxacin, and was resistant to amoxacillin, doxycycline, oxytetracycline, tetracycline, and trimethoprim. Ten isolates were confirmed to be pathogenic to the doctor fish. Doctor fish infected with C. freundii and S. putrefaciens showed high mortality in the experimental groups. These results indicate that the variation in bacterial numbers in the rearing water was related to the death of doctor fish. C. freundii and S. putrefaciens were directly implicated in causing the death of doctor fish in the aquarium.

Identification of Novel Bacillus subtilis IDCC 9204 Producing a High-Level Fibrinolytic Enzyme and Properties of NK-IL9204 (고농도 혈전용해효소를 생산하는 신규 Bacillus subtilis IDCC 9204의 분리 및 NK-IL9204의 효소학적 특성)

  • Lee, Seung-Hun;An, Gwangmin;Kim, Heu-Hang;Kang, Jae-Hoon;Kang, Dae-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.600-606
    • /
    • 2012
  • A Bacillus sp. that produces fibrinolytic enzyme was isolated from Cheonggukjang, a traditional Korean soybean-fermented food. According to 16S rRNA gene base sequencing, the bacillus was identified as a variety of Bacillus subtilis, and named Bacillus subtilis IDCC 9204. Fibrinolytic enzyme NK-IL9204 was stable up to $60^{\circ}C$ and within pH range of 5-10. Purified NK-IL9204 was detected through fibrin zymography. The molecular weight and isoelectric point of the enzyme were estimated to be 27.7 kDa and 6.7 by SDS-PAGE and 2D electrophoresis, respectively. Its amino acid sequence was similar to that of nattokinase (identities 99.5%) and different from that of nattokinase BPN (identities 86.4%). The plasma fibrinolytic activity of NK-IL9204 was measured by euglobulin clot lysis times (ECLT). The NK-IL9204 was orally administered to SD rats for 3 weeks (1,000 FU/rat/day). The ECLT was significantly shortened by supplementation of NK-IL9204.

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

A Study on Bacterial Contamination of Cooking Environments of Food Service Operations at University (대학 구내식당 식품위생환경의 세균오염도 조사연구)

  • Park, SungJun;Yun, Hyun Sun;Lee, Sujin;Yang, Minji;Kwon, Bomi;Lee, Cheonghoon;Ko, GwangPyo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.88-97
    • /
    • 2014
  • Objectives: The aim of this study was to evaluate the occurrence of microbiological contamination of kitchen utensils and environments of food service operations at university located in Seoul, Korea. Methods: We collected swab samples from the surfaces of knives, chopping boards, floors, and drains, as well as drinking water and airborne bacteria samples from 20 food service operations. Three bacterial indicators and five food poisoning bacteria were measured quantitatively and qualitatively, respectively. We used selective culture media and the PCR assay targeting 16S rRNA gene for the microbiological analysis. Results: We detected bacterial indicators on knives or chopping boards in eight different food service operations and, three food service operations (I, M, and O) showed more than 3 log colony forming units $(CFU)/100cm^2$ on their knives, significantly higher than the others. The levels of bacterial indicators on the floors and drains in the cooking areas were much higher than those on the cooking utensils. S. aureus was detected on 10 floors and 8 drains. Culturable bacteria were identified in 5 drinking water samples, and food service operation B ($431.1CFU/m^3$) and C ($551.2CFU/m^3$) showed more than $400CFU/m^3$ of total airborne bacteria. Conclusions: These results suggest that some of food service operations in this study may require additional investigation to secure the microbial safety of cooking environments. In addition, further actions including hygiene education for employees and proper guidelines to maintain clean cooking environments should be prepared.

Expressed sequence tag analysis of Meretrix lusoria (Veneridae) in Korea (한국산 백합 (Meretrix lusoria) 의 전사체 분석)

  • Kang, Jung-Ha;Jeong, Ji Eun;Kim, Bong Seok;An, Chel-Min;Kang, Hyun-Sook;Kang, Se-Won;Hwang, Hee Ju;Han, Yeon Soo;Chae, Sung-Hwa;Ko, Hyun-Sook;Lee, Jun-Sang;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The importance of biological resources has been gradually increasing, and mollusks have been utilized as main fishery resources in terrestrial ecosystems. But little is known about genomic and transcriptional analysis in mollusks. This is the first report on the transcriptomic profile of Meretrix lusoria. In this study, we constructed cDNA library and determined 542 of distinct EST sequences composed of 284 singletons and 95 contigs. At first, we identified 180 of EST sequences that have significant hits on protein sequences of the exclusive Mollusks database through BLASTX program and 343 of EST sequences that have significant hits on NCBI NR database. We also found that 211 of putative sequences through local BLAST (blastx, E < e-10) search against KOG database were classified into 16 functional categories. Some kinds of immune response related genes encoding allograft inflammatory factor 1 (AIF-1), B-cell translocation gene 1 (BTG1), C-type lectin A, thioester-containing protein and 26S proteasome regulatory complex were identified. To determine phylogenetic relationship, we identified partial sequences of four genes (COX1, COX2, 12S rRNA and NADH dehydrogenase) that significantly matched with the mitochondrial genomes of 3 species-Ml (Meretrix lusoria), Mp (Meretrix petechialis) and Mm (Meretrix meretrix). As a result, we found that there was a little bit of a difference between sequences of Korean isolates and other known isolates. This study will be useful to develop breeding technology and might also be helpful to establish a classification system.

Pseudomonas azotoformans HC5 Effective in Antagonistic of Mushrooms Brown Blotch Disease Caused by Pseudomonas tolaasii (버섯 세균갈색무늬병균(Pseudomonas tolaasii)에 항균활성을 가지는 미생물 Pseudomonas azotoformans HC5)

  • Lee, Chan-Jung;Yoo, Young-Mi;Han, Ju-Yeon;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Gong, Won-Sik;Suh, Jang-Sun;Han, Hye-Su;Cha, Jae-Soon
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.219-224
    • /
    • 2014
  • A gram-negative bacterium was isolated from spent substrate of Agaricus bisporus and showed marked antagonistic activity against Pseudomonas tolaasii. The bacterium was identified as Pseudomonas azotoformans by based on the cultural, biochemical and physiological characteristics, and 16S rRNA gene sequence. The isolated bacterium was saprophytic but not parasitic nor pathogenic to cultivation mushroom. The isolated bacterium for P. tolaasii cell was not sufficient for inhibition in vitro. Control efficacy of Pseudomonas azotoformans HC5 to brown blotch of P. tolaasii was 73, 78, and 71% on A. bisporus, Flammulina velutipes, and Pleurotus ostreatus, respectively. In the future, the suppressive bacterium may be useful for development of a biocontrol system.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

Growth-promoting effect on Tricholoma matsutake mycelium by Terrabacteria isolated from pine mushroom habitats in Korea (국내 송이 자생지에서 분리된 Terrabacteria에 의한 송이균사체 생장촉진 효과)

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;Gi-Hong An
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.190-193
    • /
    • 2023
  • To cultivate pine mushroom (Tricholoma matsutake) artificially, co-cultivation with microorganisms has been introduced. Here, experiments were performed to assess the growth-promoting effect of bacteria on T. matsutake mycelia. Bacteria were isolated from soil samples collected in Yangyang County, Korea. Four of the bacterial isolates (Y22_B06, Y22_B11, Y22_B18, and Y22_B22) exhibited a growth-promoting effect on T. matsutake mycelia (154.67%, 125.91%, 134.06%, and 158.28%, respectively). To analyze the characteristics of the bacteria, especially the antifungal activity, 𝛼-amylase and cellulase activity assays were performed. In comparison with the controls, the isolated bacteria exhibited low 𝛼-amylase and cellulase activity. 16S rRNA gene sequencing was performed to identify the four bacterial isolates. The isolates belonged to the Terrabacteria group and were identified as Microbacterium paraoxydans, Paenibacillus castaneae, Peribacillus frigoritolerans, and P. butanolivorans. These bacterial isolates are expected to have contributed to the growth promotion of T. matsutake mycelia and the artificial cultivation of T. matsutake.

Effect of increasing levels of rice distillers' by-product on growth performance, nutrient digestibility, blood profile and colonic microbiota of weaned piglets

  • Cong, Oanh Nguyen;Taminiau, Bernard;Kim, Dang Pham;Daube, Georges;Van, Giap Nguyen;Bindelle, Jerome;Fall, Papa Abdulaye;Dinh, Ton Vu;Hornick, Jean-Luc
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.788-801
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effects of diets containing different wet rice distillers' by-product (RDP) levels on growth performance, nutrient digestibility, blood profiles and gut microbiome of weaned piglets. Methods: A total of 48 weaned castrated male crossbred pigs, initial body weight 7.54±0.97 kg, and age about 4 wks, were used in this experiment. The piglets were randomly allocated into three iso-nitrogenous diet groups that were fed either a control diet, a diet with 15% RDP, or a diet with 30% RDP for a total of 35 days. Chromium oxide was used for apparent digestibility measurements. On d 14 and d 35, half of the piglets were randomly selected for hemato-biochemical and gut microbiota evaluations. Results: Increasing inclusion levels of RDP tended to linearly increase (p≤0.07) average daily gain on d 14 and d 35, and decreased (p = 0.08) feed conversion ratio on d 35. Empty stomach weight increased (p = 0.03) on d 35 while digestibility of diet components decreased. Serum globulin concentration decreased on d 14 (p = 0.003) and red blood cell count tended to decrease (p = 0.06) on d 35, parallel to increase RDP levels. Gene amplicon profiling of 16S rRNA revealed that the colonic microbiota composition of weaned pigs changed by inclusion of RDP over the period. On d 14, decreased proportions of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge, and increased proportions of Prevotellaceae_ge, Prevotella_2, and Prevotella_9 were found with inclusion of RDP, whereas opposite effect was found on d 35. Additionally, the proportion of Lachnospiraceae_ge, Ruminococcaceae_ge, Ruminococcaceae_UCG-005, and Bacteroidales_ge in RDP diets decreased over periods in control diet but increased largely in diet with 30% RDP. Conclusion: These results indicate that RDP in a favorable way modulate gastrointestinal microbiota composition and improve piglet performance despite a negative impact on digestibility of lipids and gross energy.