• Title/Summary/Keyword: 12-bit

Search Result 999, Processing Time 0.029 seconds

The noise impacts of the open bit line and noise improvement technique for DRAM (DRAM에서 open bit line의 데이터 패턴에 따른 노이즈(noise) 영향 및 개선기법)

  • Lee, Joong-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.260-266
    • /
    • 2013
  • The open bit line is vulnerable to noise compared to the folded bit line when read/write for the DRAM. According to the increasing DRAM densities, the core circuit operating conditions is exacerbated by the noise when it comes to the open bit line 6F2(F : Feature Size) structure. In this paper, the interference effects were analyzed by the data patterns between the bit line by experiments. It was beyond the scope of existing research. 68nm Tech. 1Gb DDR2, Advan Tester used in the experiments. The noise effects appears the degrade of internal operation margin of DRAM. This paper investigates sense amplifier power line splits by experiments. The noise can be improved by 0.2ns(1.3%)~1.9ns(12.7%), when the sense amplifier power lines split. It was simulated by 68nm Technology 1Gb DDR2 modeling.

Efficient TTS Database Compression Based on AMR-WB Speech Coder (AMR-WB 음성 부호화기를 이용한 TTS 데이터베이스의 효율적인 압축 기법)

  • Lim, jong-Wook;Kim, Ki-Chul;Kim, Kyeong-Sun;Lee, Hang-Seop;Park, Hae-Young;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.290-297
    • /
    • 2009
  • This paper presents an improved adaptive multi-rate wideband (AMR-WB) algorithm for the efficient Text-To-Speech (TTS) database compression. The proposed algorithm includes unnecessary common bit-stream (CBS) removal and parameter delta coding combined with speaker-dependent huffman coding to reduce the required bit-rate without any quality degradation. We also propose lossy coding schemes to produce the maximum bit-rate reduction with negligible quality degradation. The proposed lossless algorithm including CBS removal can reduce bit-rate by 12.40% without quality degradation compared with the 12.65 kbps AMR-WB mode. The proposed lossy algorithm can reduce bit-rate by 20.00% with 0.12 PESQ degradation.

Design of a 12-bit 1MSps SAR ADC using 0.18㎛ CMOS Process (0.18㎛ CMOS 공정을 이용한 12-bit 1MSps 연속 근사화 아날로그-디지털 변환기 설계)

  • Seong, Myeong-U;Choi, Seong-Kyu;Kim, Sung-Woo;Kim, Shin-Gon;Lee, Joo-Seob;Oh, Se-Moung;Seo, Min-Soo;Ryu, Jee-Youl
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.365-367
    • /
    • 2013
  • 본 논문에서는 $0.18{\mu}m$ CMOS 공정 기술을 이용하여 12-bit 1MSps 연속 근사화 아날로그-디지털 변환기(Analog to Digital Converter : ADC)를 설계하였다. 설계된 아날로그-디지털 변환기는 Cadence Tool을 이용하여 시뮬레이션 및 레이아웃을 진행하였다. 시뮬레이션 결과 1.8V의 공급전압에서 전력 소모는 5.5mW였고, 입력 신호의 주파수가 100kHz일 때, SNDR은 70.03dB, 유효 비트수는 11.34bit의 결과를 보였다. 설계된 변환기는 $0.8mm{\times}0.7mm$ 크기로 레이아웃 되었다.

  • PDF

Design and Fabrication of 5-Bit Broadband MMIC Phase Shifter (5-Bit 광대역 MMIC 위상 변위기 설계 및 제작)

  • 정상화;백승원;이상원;정기웅;정명득;우병일;소준호;임중수;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2002
  • 5-bit broadband MMIC phase shifter has been designed and fabricated. For the broadband performance, 11.25$^{\circ}$, 22.5$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$ bit have been designed with Lange coupler and 180$^{\circ}$ bit has been implemented by using shorted coupled line with Lange coupler and $\pi$-network of transmission line. Due to Lange coupler with large size, the Lange couplers have been folded far circuit size reduction. Low loss PIN diode has been utilized as a switch for each bit. Fabricated 5-bit broadband phase shifter shows the measured results that RMS phase error of 5 major phases is 3.5$^{\circ}$, maximum insertion loss is 12.5 dB, and maximum input and output return loss are 7 dB and 10 dB, respectively. The size of fabricated phase shifter is 6.5$\times$5.3 $ extrm{mm}^2$.

A Design of the High-Speed Cipher VLSI Using IDEA Algorithm (IDEA 알고리즘을 이용한 고속 암호 VLSI 설계)

  • 이행우;최광진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • This paper is on a design of the high-speed cipher IC using IDEA algorithm. The chip is consists of six functional blocks. The principal blocks are encryption and decryption key generator, input data circuit, encryption processor, output data circuit, operation mode controller. In subkey generator, the design goal is rather decrease of its area than increase of its computation speed. On the other hand, the design of encryption processor is focused on rather increase of its computation speed than decrease of its area. Therefore, the pipeline architecture for repeated processing and the modular multiplier for improving computation speed are adopted. Specially, there are used the carry select adder and modified Booth algorithm to increase its computation speed at modular multiplier. To input the data by 8-bit, 16-bit, 32-bit according to the operation mode, it is designed so that buffer shifts by 8-bit, 16-bit, 32-bit. As a result of simulation by 0.25 $\mu\textrm{m}$ process, this IC has achieved the throughput of 1Gbps in addition to its small area, and used 12,000gates in implementing the algorithm.

Development of 64-Channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호 획득을 위한 실시간 64-Ch 12-bit 1ks/s 하드웨어 개발)

  • Lee, Dong-Ha;Yoo, Jae-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.902-905
    • /
    • 2004
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUID) sensors for precision MCG signal acquisitions. Such system is composed of hundreds of sensors, requiring fast signal sampling and precise analog-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit 1ks/s, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 ms speed. The test result shows that the signal acquisition is done in 168 usuc which is much shorter than the required 1 ms period. This hardware will be extended to 256 channel data acquisition to be used for the diagnosis system.

  • PDF

An Adaptive Steganography of Optical Image using Bit-Planes and Multi-channel Characteristics

  • Kang, Jin-Suk;Jeong, Taik-Yeong T.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.136-146
    • /
    • 2008
  • We proposed an adaptive steganography of an optical image using bit-planes and multichannel characteristics. The experiment's purpose was to compare the most popular methods used in optical steganography and to examine their advantages and disadvantages. In this paper we describe two digital methods: the first uses less significant bits(LSB) to encode hidden data, and in the other all blocks of $n{\times}n$ pixels are coded by using DCT(Digital Cosine Transformation), and two optical methods: double phase encoding and digital hologram watermarking with double binary phase encoding by using IFTA(Iterative Fourier Transform Algorithm) with phase quantization. Therefore, we investigated the complexity on bit plane and data, similarity insert information into bit planes. As a result, the proposed method increased the insertion capacity and improved the optical image quality as compared to fixing threshold and variable length method.

A 12-bit Hybrid Digital Pulse Width Modulator

  • Lu, Jing;Lee, Ho Joon;Kim, Yong-Bin;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a 12-bit high resolution, power and area efficiency hybrid digital pulse width modulator (DPWM) with process and temperature (PT) calibration has been proposed for digital controlled DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential tapped delay line ring-mux digital-to-time converter (DTC) schema and a 6-bit counter-comparator DTC schema, resulting in a power and area saving solution. Furthermore, since the 6-bit differential delay line ring oscillator serves as the clock to the high 6-bit counter-comparator DTC, a high frequency clock is eliminated, and the power is significantly saved. In order to have a simple delay cell and flexible delay time controllability, a voltage controlled inverter is adopted to build the deferential delay cell, which allows fine-tuning of the delay time. The PT calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs and a lookup table. The monitor circuits sense the PT (Process and Temperature) variations, and the flash ADC converts the data into a digital code. The complete circuits design has been verified under different corners of CMOS 0.18um process technology node.

A LEA Implementation study on UICC-16bit (UICC 16bit 상에서의 LEA 구현 적합성 연구)

  • Kim, Hyun-Il;Park, Cheolhee;Hong, Dowon;Seo, Changho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.585-592
    • /
    • 2014
  • In this paper, we study the LEA[1] block cipher system in UICC-16bit only. Also, we explain a key-schedule function and encryption/decryption structures, propose an advanced modified key-scheduling, and perform LEA in UICC-16bit that we proposed advanced modified key-scheduling. Also, we compare LEA with ARIA that proposed domestic standard block cipher, and we evaluate the efficiency on the LEA algorithm.

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF