• Title/Summary/Keyword: 1:12 MUX

Search Result 6, Processing Time 0.017 seconds

A CMOS 16:1 Binary-Tree Multiplexer applying Delay Compensation Techniques (딜레이 보상 기법을 적용한 바이너리-트리 구조의 CMOS 16:1 멀티플렉서)

  • Shon, Kwan-Su;Kim, Gil-Su;Kim, Kyu-Young;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.21-27
    • /
    • 2008
  • This paper describes a CMOS 16:1 binary-tree multiplexer(MUX) using $0.18-{\mu}m$ technology. To provide immunity for wide frequency range and process-and-temperature variations, the MUX adopts several delay compensation techniques. Simulation results show that the proposed MUX maintains the setup margins and hold margins close to the optimal value, i.e., 0.5UI, in wide frequency-range and in wide process-and-temperature variations, with standard deviation of 0.05UI approximately. These results represent that these proposed delay compensations are effective and the reliability is much improved although CMOS logic circuits are sensitive to those variations. The MUX is fabricated using $0.18-{\mu}m$ CMOS process, and tested with a test board. At power supply voltage of 1.8-V, maximum data-rate and area of the MUX is 1.65-Gb/s and 0.858 $mm^2$, respectively. The MUX dissipates a power of 24.12 mW, and output eye opening is 272.53 mV, 266.55 ps at 1.65-Gb/s operation.

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

Study of the Multigigabit Multiplexer Design (기가주파수대 멀티플렉서 설계에 관한 연구)

  • 김학선;최병하;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 1990
  • A 4:1 Time Division Multiplexer(MUX) had been designed in using GaAs Source Coupled FET Logic(SCFL), Designed Multiplexer uses a time division frequency divider and two stage of singnal combining 2:1 multiplexer. The performance of the multiplexer is verified by PSPICE simulation. Designed circuit operates up to 12.5Gbit/s with a power dissipation of 192mW. These performance are more advanced than other reported multiplexer in the speed and power dissipation.

  • PDF

A 12-bit Hybrid Digital Pulse Width Modulator

  • Lu, Jing;Lee, Ho Joon;Kim, Yong-Bin;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a 12-bit high resolution, power and area efficiency hybrid digital pulse width modulator (DPWM) with process and temperature (PT) calibration has been proposed for digital controlled DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential tapped delay line ring-mux digital-to-time converter (DTC) schema and a 6-bit counter-comparator DTC schema, resulting in a power and area saving solution. Furthermore, since the 6-bit differential delay line ring oscillator serves as the clock to the high 6-bit counter-comparator DTC, a high frequency clock is eliminated, and the power is significantly saved. In order to have a simple delay cell and flexible delay time controllability, a voltage controlled inverter is adopted to build the deferential delay cell, which allows fine-tuning of the delay time. The PT calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs and a lookup table. The monitor circuits sense the PT (Process and Temperature) variations, and the flash ADC converts the data into a digital code. The complete circuits design has been verified under different corners of CMOS 0.18um process technology node.

Pseudo-Randomized Frequency Carrier Modulation Scheme with Improved Harmonics Spectra Spreading Effects (고조파 스펙트럼 확산효과를 개선한 준 랜덤 주파수 캐리어 변조기법)

  • Kim, Jong-Nam;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.64-70
    • /
    • 2008
  • In case that conventional PRC(Pseudo-Randomized Frequency Carrier) modulation scheme is applied to a three-phase HBML(H-Bridge Multi-Level Inverter), the dominant harmonics spectra appear at twice switching frequency. In this paper, the dominant harmonics spectra spreading effect of the conventional PRC scheme was improved by using three stage MUXs(Multiplexers) and two triangular carriers with fixed frequency which has mutual relation of the twice frequency. To confirm the validity of the improved PRC scheme, the experiment were performed on a 1.5[kw] three-phase HBML based induction motor drives. And, the harmonics spectra of the conventional and improved PRC schemes are compared and discussed.

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF