• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.03 seconds

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity

  • Lee, Sanghun;Jang, Sunhwan;Nguyen, Cam;Choi, Dae-Hyun;Kim, Jusung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.492-498
    • /
    • 2017
  • In this paper, we integrate a divide-by-3 injection-locked frequency divider (ILFD) in CMOS technology with a $0.18-{\mu}m$ BiCMOS process. We propose a self-injection technique that utilizes harmonic conversion to improve the locking range, phase-noise, and input sensitivity simultaneously. The proposed self-injection technique consists of an odd-to-even harmonic converter and a feedback amplifier. This technique offers the advantage of increasing the injection efficiency at even harmonics and thus realizes the low-power implementation of an odd-order division ILFD. The measurement results using the proposed self-injection technique show that the locking range is increased by 47.8% and the phase noise is reduced by 14.7 dBc/Hz at 1-MHz offset frequency with the injection power of -12 dBm. The designed divide-by-3 ILFD occupies $0.048mm^2$ with a power consumption of 18.2-mW from a 1.8-V power supply.

Design of a 900 MHz High-linear CMOS Frequency Up-converter for an ASK Modulator application (ASK 변조기 응용을 위한 900 MHz 대역 고선형 CMOS 상향 주파수 혼합기 설계)

  • Jang, Jin-Suk;Chae, Kyu-Sung;Kim, Chang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.443-444
    • /
    • 2008
  • A double-balanced frequency up-converter using the Gilbert cell structure has been designed with the TSMC $0.18\;{\mu}m$ CMOS library. The frequency up-converter consists of a Mixer core and IF / LO balun. Frequency Up-converter exhibits a 3.4 dB conversion gain with a - 7.6 dBm $P_{1dB}$ for IF power of -10 dBm and LO power of 0 dBm inputs. It also exhibits 92.2 % modulation depth as a ASK modulator.

  • PDF

A Fast Low Dropout Regulator with High Slew Rate and Large Unity-Gain Bandwidth

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2013
  • A low dropout regulator (LDO) with fast transient responses is presented. The proposed LDO eliminates the trade-off between slew rate and unity gain bandwidth, which are the key parameters for fast transient responses. In the proposed buffer, by changing the slew current path, the slew rate and unity gain bandwidth can be controlled independently. Implemented in $0.18-{\mu}m$ high voltage CMOS, the proposed LDO shows up to 200 mA load current with 0.2 V dropout voltage for $1{\mu}F$ output capacitance. The measured maximum transient output voltage variation, minimum quiescent current at no load condition, and maximum unity gain frequency are 24 mV, $7.5{\mu}A$, and higher than 1 MHz, respectively.

High Speed TCAM Design using SRAM Cell Stability (SRAM 셀 안정성 분석을 이용한 고속 데이터 처리용 TCAM(Ternary Content Addressable Memory) 설계)

  • Ahn, Eun Hye;Choi, Jun Rim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.19-23
    • /
    • 2013
  • This paper deals with the analysis of 6T SRAM cell stability for Hi-speed processing Ternary Content Addressable Memory. The higher the operation frequency, the smaller CMOS technology required in the designed TCAM because the purpose of TCAM is high-speed data processing. Decrease of Supply voltage is one cause of unstable TCAM operation. Thus, We should design TCAM through analysis of SRAM cell stability. In this paper we propose methodology to characterize the Static Noise Margin of 6T SRAM. All simulations of the TCAM have been carried out in 180nm CMOS process technology.

Design of 1.0V O2 and H2O2 based Potentiostat (전원전압 1.0V 산소 및 과산화수소 기반의 정전압분극장치 설계)

  • Kim, Jea-Duck;XIAOLEI, ZHONG;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a unified potentiostat which can measure the current of both $O_2$-based and $H_2O_2$-based blood glucose sensors with low supply voltage of 1.0V has been designed and verified by simulations and measurements. Potentiostat is composed of low-voltage operational transconductance amplifier, cascode current mirrors and mode-selection circuits. It can measure currents of blood glucose chemical reactions occurred by $O_2$ or $H_2O_2$. The body of PMOS input differentional stage of the operational transconductance amplifier is forward-biased to reduce the threshold voltage for low supply voltage operation. Also, cascode current mirror is used to reduce current measurement error generated by channel length modulation effects. The proposed low-voltage potentiostat is designed and simulated using Cadence SPECTRE and fabricated in Magnachip 0.18um CMOS technology with chip size of $110{\mu}m{\times}60{\mu}m$. The measurement results show that consumption current is maximum $46{\mu}A$ at supply voltage of 1.0V. Using the persian potassium($K_3Fe(CN)_6$) equivalent to glucose, the operation of the fabricated potentiostat was confirmed.

Design and Implementation of V-BLAST for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 V-BLAST의 설계 및 구현)

  • Choi Yong-Woo;Park In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.415-418
    • /
    • 2004
  • This paper describes a VLSI implementation of BLAST detection for MIMO-OFDM systems. To achieve high speed requirement, we propose the fully pipeline architecture for BLAST structure. This design is implemented using $0.18{\mu}m$ CMOS technology. For a 4-transmit and 4-receive antennas system, it takes $7.5{\mu}s$ to calculate nulling vector and detection order from 48 channel matrixes.

  • PDF

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

  • Yu, Tae-Geun;Cho, Seong-Ik;Jeong, Hang-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.281-285
    • /
    • 2006
  • In order to widen the tuning range, capacitive degeneration is applied to fully CMOS LC VCOs. Small signal analysis shows that the fixed MOSFET capacitance seen by the LC tank is smaller than that of the traditional LC VCO, resulting in significant extension in the tuning range. This improvement in the tuning range has been verified through measurement of a 10-GHz LC VCO fabricated by $0.18{\mu}m$ CMOS process. The measured tuning range is from 9.8-GHz to 12-GHz, which is better than those of the reported CMOS LC VCOs in 10-GHz band. The measured phase noise is - 103dBc/Hz at 1MHz offset.

CMOS Realization of VDTA-Gm and its Application on Filter Circuits (VDTA-Gm 회로의 CMOS 구현 및 필터 응용)

  • Bang, Jun-Ho;Basnet, Barun;Kim, Jung-Hun;Kim, Hoyoung;Oh, Ildae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1535-1536
    • /
    • 2015
  • CMOS realization of VDTA (Voltage Differencing Transconductance Amplifier) - Gm and its application in the design of multifunctional filter is presented. Small signal analysis is also done to simplify and depict the realization method. Also the parameters and can be tuned by adjusting the circuit components. The performance of VDTA-Gm amplifier and the designed Band Pass filter are simulated using HSPICE with CMOS $0.18{\mu}m$ process parameters.

  • PDF

Optical Failure Analysis Technique in Deep Submicron CMOS Integrated Circuits

  • Kim, Sunk-Won;Lee, Hyong-Min;Lee, Hyun-Joong;Woo, Jong-Kwan;Cheon, Jun-Ho;Kim, Hwan-Yong;Park, Young-June;Kim, Su-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper, we have proposed a new approach for optical failure analysis which employs a CMOS photon-emitting circuitry, consisting of a flip-flop based on a sense amplifier and a photon-emitting device. This method can be used even with deep-submicron processes where conventional optical failure analyses are difficult to use due to the low sensitivity in the near infrared (NIR) region of the spectrum. The effectiveness of our approach has been proved by the failure analysis of a prototype designed and fabricated in 0.18 ${\mu}m$ CMOS process.

Design of Bias Circuit for GHz BiCMOS Low Noise Amplifier (GHz BiCMOS 저 잡음 증폭기를 위한 바이어스 회로 설계)

  • Choi, Geun-Ho;Sung, Myeong-U;Rastegar, Habib;Kim, Shin-Gon;Kurbanov, Murod;Chandrasekar, Pushpa;Kil, Keun-Pil;Ryu, Jee-Youl;Noh, Seok-Ho;Yoon, Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.696-697
    • /
    • 2016
  • 본 논문은 5.25-GHz BiCMOS 저 잡음 증폭기를 위한 바이어스 회로를 제안한다. 이러한 회로는 1볼트 전원에서 동작하며, 저전압 및 저전력으로 동작하도록 설계되어 있다. 제안한 회로는 $0.18{\mu}m$ SiGe HBT BiCMOS로 설계하였다. 이러한 회로는 밴드 갭 참조회로 (band-gap reference circuit)를 사용하였다.

  • PDF