• Title/Summary/Keyword: 흐름수축

Search Result 47, Processing Time 0.021 seconds

Maximum exercise in 20 men Common carotid artery blood flow velocity impact (20대 남성에서 최대운동이 뇌로가는 혈관인 총경동맥 혈류 속도에 미치는 영향)

  • Kim, Ji-Won
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.5-12
    • /
    • 2009
  • Arterial blood from the heart chonggyeong passed directly to the cerebral arteries and the blood circulation is important, especially in arteries that prevent blood flow there are several variables. Among the variables the average flow velocity, pulse index, and blood flow resistance and which variables, double maekbakjisuna systolic and diastolic blood flow resistance index at the maximum rate and blood pressure associated with this because they are important variables, The change of variables such as speed noehyeolryu There are observations about the non-invasive ultrasound measurements using Doppler noehyeolryu uses. Up to 20 men in the exercise of noeroganeun hyeolryuin chonggyeong arteries to increase blood flow rates can be found.

  • PDF

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.33-38
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific race image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based fare model.

  • PDF

A study of a cardiac disorder distinction based on SVM by using a heart sound (심음을 이용한 SVM 기반의 심장 질환 판별에 관한 연구)

  • Kim, Bo-Ri;Beack, Seung-Hwa;Kim, Dong-Wan;Paek, Seung-Eun;Kwon, Sun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2173-2174
    • /
    • 2006
  • 심음은 심장이 수축, 확장 시에 심장의 움직임과 혈류의 흐름에 의해 발생하는 음향이다. 심음은 여러 신호원으로 이루어져 있고, 매우 복잡하고 비고정적인 신호이다. 심장의 질환에 따라 심음의 소리는 다르게 나타난다. 심음을 구분하여 심장 질환의 유무를 판단하는 가장 기초적인 기준이 될 수 있다. 본 연구에서는 Support Vector Machine 기법을 이용하여 심음을 통한 심장 질환 판별 검출 알고리즘을 제안하였다. Support Vector Machine은 신경망의 한 종류이며 이진분류에서 좋은 성능을 보인다. 또한 Polynomial Radial Basis Function, Multi-Layer Perceptron Classifiers를 위한 대안적인 학습방법으로 사용된다. 이러한 특성을 사용하여 심음의 데이터들을 일정한 기준에 의하여 (+)데이터와 (-)데이터로 분리한 후, 각 데이터들을 학습시켜 최적의 데이터를 만든다. 이후 각 데이터들은 점층적인 추가 학습을 시킴으로써 적은 양의 학습 데이터만으로도 높은 분류 성능을 표현할 수 있다. 이 연구에서 제안된 SVM을 실제 심음 데이터에 적용한 실험에서 심장 질환의 유무 판별에 우수한 성능을 보임을 확인할 수 있을 것으로 판단된다.

  • PDF

A Development of Physio-Module for Echocardiography (심초음파용 생체신호측정모듈의 개발)

  • Jang, Won-Seuk;Kim, Nam-Hyun;Jeon, Dae-Keun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.21-29
    • /
    • 2010
  • In this study, we aimed to develope the physio-module for echocardiography. This physio-module includes multi-functions such as ECG, respiration, PCG, heart sound, and this is used to diagnose a cardiac disease in using ultrasound images synchronized with biosignals of physio-module. In this paper, the developed physio-module was verified by applying various test patterns considering each biosignal's characteristics and we could get the performance of QRS trigger delay time within international standard, EC-13 criteria. And ECG's change in physio-module and blood flow in M-mode was synchronized.

Numerical Analysis and Experiments for the Stratification of the Hot Water Storage (수축열조의 온도 계층화에 대한 수치해석 및 실험적 연구)

  • Yang, Y.S.;Baek, N.C.;Kim, H.J.;Yoo, J.I.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.187-197
    • /
    • 1993
  • In this study, the numerical analysis and experiments of the hot water storage using the thermal stratification techniques were carried out. The CPU time for a typical run of the the thermal stratification up to 900 seconds took one week for a $81{\times}31$ mesh size and 10 days for a $118{\times}31$ mesh size, respectively, for a cylindrical shape of the storage. In the initial stage, the numerical results were in favorable agreement with the experimental results, but it showed that the temperature gradients in the storage decreased gradually with time. It was also found that the increase of ${\delta}t$ decreased the convergent speed due to the intensive fluctuation of the velocity field in every iteration. The increase of numbers of grids is projected to forecast a more accurate result, but it made the computing time longer and woul slow down convergence. At the experiments of the flow visualization, it was confirmed that the thermal stratification was apparently built up due to the installation of diffuser at the lower part of the storage. Thus, the thermal performance of the storage could be improved by installing the diffusers at the inlet and outlet.

  • PDF

A Study on Practical Engineering Model for Tool Temperature Control (금형온도제어에 대한 실천공학모형 연구)

  • Shin, Ju-Kyung
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • In injection molding, the tool temperature has a great influence on the quality of the molded article. The appropriate temperature is determined by the molding material and the quality required for the molded part, and the important point is that the temperature should be stable. First, the tool temperature should be set in accordance with the quality required by the molded article within the range of the tool temperature conditions suitable for the material. That is, the tool temperature changes depending on the importance of the surface gloss of the molded article, shortening of the molding cycle, prevention of deformation, degree of shrinkage, ease of resin flow and the like. In order to improve practical tool technology, we propose a training model of the difficult process of tool temperature control which can be utilized in industry that design and manufacture injection mold.

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.

Numerical Analysis on the Determination of Head Loss by Perforated Vertical Walls (연직 유공벽의 수두손실 결정을 위한 수치해석)

  • Chun, In-Sik;Lee, Seong-Yeop;Park, Kyung-Soo;An, Dong-Keun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.194-204
    • /
    • 2007
  • A numerical analysis and hydraulic experiments were undertaken to investigate the head loss occurring when a flow passes through vertical perforated walls. The numerical analysis applied continuity, momentum and energy equations to the control volumes that were set near the perforated wall. Non-dimensional equations were then derived to calculate both upstream depth and head loss for the given values of downstream depth and velocity. The hydraulic experiments were performed with several single and triple perforated plates varying their opening ratios and intervals. The numerical results with the single plates were compared with the experimental results, and it was shown that the contraction coefficient of the vertical line jet formed after the perforated plates relies on downstream Froude number as well as opening ratio. Based on the experimental results, empirical formulas were formulated. Finally, the formulas were applied to the triple plates sequentially from downstream side to upstream side, and it was found that in general the predicted values nicely agreed with the experimental results.