Numerical Analysis on the Determination of Head Loss by Perforated Vertical Walls

연직 유공벽의 수두손실 결정을 위한 수치해석

  • Chun, In-Sik (Department of Civil Engineering, Konkuk University) ;
  • Lee, Seong-Yeop (Department of Civil Engineering, Konkuk University) ;
  • Park, Kyung-Soo (Civil & Environmental Tech. Research Team, Research & Engineering Div., POSCO Engineering & Construction Co., Ltd.) ;
  • An, Dong-Keun (Civil & Environmental Tech. Research Team, Research & Engineering Div., POSCO Engineering & Construction Co., Ltd.)
  • Published : 2007.06.30

Abstract

A numerical analysis and hydraulic experiments were undertaken to investigate the head loss occurring when a flow passes through vertical perforated walls. The numerical analysis applied continuity, momentum and energy equations to the control volumes that were set near the perforated wall. Non-dimensional equations were then derived to calculate both upstream depth and head loss for the given values of downstream depth and velocity. The hydraulic experiments were performed with several single and triple perforated plates varying their opening ratios and intervals. The numerical results with the single plates were compared with the experimental results, and it was shown that the contraction coefficient of the vertical line jet formed after the perforated plates relies on downstream Froude number as well as opening ratio. Based on the experimental results, empirical formulas were formulated. Finally, the formulas were applied to the triple plates sequentially from downstream side to upstream side, and it was found that in general the predicted values nicely agreed with the experimental results.

흐름이 연직유공벽을 통과할 때 발생하는 수두손실을 수치해석과 수리실험을 통하여 고찰하였다. 수치 해석에 대해서는 유공벽 전 후의 검사체적에 연속방정식, 모멘텀 방정식, 그리고 에너지 방정식을 적용하였으며 주어진 하류 쪽 수심과 유속에 대하여 상류 쪽 수심 및 유공벽 수두손실을 계산할 수 있는 무차원 관계식을 유도 하였다. 수리실험은 단일유공판과 삼중유공판에 대하여 각각 수행하였다. 단일유공판에 대한 계산결과와 실험결과를 비교하여 유공부 오리피스에서 연직 선형 제트류의 수축계수가 개구율뿐만 아니라 하류 쪽 Froude 수에도 의존함을 밝혔으며, 실험결과에 근거하여 수두손실을 계산하기 위한 실험식을 제시하였다. 단일유공판의 실험식을 삼중유공판에 대하여 하류에서 상류 쪽으로 축차적으로 적용한 결과, 예측치와 실험결과가 대체적으로 잘 일치함을 확인하였다.

Keywords

References

  1. 박구용, 고광오, 손상영, 전찬후(2004). 투수식 소파판을 적용한 돌제 및 파제제 부두 설계 II - 부산항 국제여객 및 해경부두 대안설계(수치 & 수리모형실험 중심으로), 대한토목학회지 52(7), pp. 52-59
  2. Al-Nassri, S. (1994). Effect of bridge pier shape and contraction coefficient on backwater profile, Hydraulic Engineering 1994, ASCE, pp. 563-568
  3. Henderson, F.M. (1966). Open channel flow, Macmillan Publishing Co., Inc., pp. 27-49
  4. Kirschmer, O. (1925). Untersuchungen ueber den Gefaellever-lust an Rechen, Dissertation, Hydraulisches Inst. d. Techn. Hochschule Muenchen, Mitteilungen Heft 1 (in German)
  5. Laws, E.M. and Livesey, J.L. (1978). Flow through screens, Annu. Rev. Fluid Mech., 10, pp. 247-266 https://doi.org/10.1146/annurev.fl.10.010178.001335
  6. Mei, C.C. (1983). The applied dynamics of ocean surface waves, John Wiley & Sons, pp. 262-268
  7. Rusten, A. and Greiner, T. (1998). Combination breakwater and pier, Naval Station Everett, Ports '98, ASCE, pp. 1277-1286
  8. Stefan, H. and Fu, A. (1978). Headloss characteristics of six profile-wire screen panels, Report No. 175, St. Anthony Falls Hydr. Lab., Univ. of Minnesota, Mineapolis, Minn
  9. Yarnell, D.L. (1934). Bridge piers as channel obstructions, U.S. Department of Agriculture, Technical Bulletin, pp. 442-451
  10. Yeh, H.H. and Shrestha, M. (1989): Free-surface flow through screen, Journal of Hydraulic Engineering, 115(10), pp. 1371-1385 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:10(1371)