Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.6.1

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle  

Jeong, Seon Yong (School of Mechanical Engineering, Chungbuk National University)
Lee, Kye Bock (School of Mechanical Engineering, Chungbuk National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.6, 2017 , pp. 1-7 More about this Journal
Abstract
The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.
Keywords
Atomization; CFD Simulation; Coating; Dispersed Phase Method; Spray;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. C. Tsai, Y. L. Song, C. S. Yang, W. Y. chiu, H. M. Lin, "Ultrasonic spray pyrolysis for nanoparticles synthesis", Journal of Materials Science, vol. 39, no. 11, pp. 3647-3657, 2004. DOI: https://doi.org/10.1023/B:JMSC.0000030718.76690.11   DOI
2 W. Duangkhamchan, F. Ronsse, F. Depypere, K. Dewettinck, J. G. Pieters, "CFD study of droplet atomisation using a binary nozzle in fluidized bed coating", Chemical Engineering Science, vol. 68, pp. 555-566, 2012. DOI: https://doi.org/10.1016/j.ces.2011.10.022   DOI
3 P. D. Hede, P. Bach and A. D. Jensen, "Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review", Chemical Engineering Science, vol. 63, pp. 3821-3842, 2008. DOI: https://doi.org/10.1016/j.ces.2008.04.014   DOI
4 Y. J. Choi, S. M. Kang, D. J. Kim, J. K. Lee, "Effect of Nozzle cap geometry for swirl-type two-fluid nozzle on the spray characteristics", Journal of ILASS-KOREA, vol. 13, no. 3, pp. 134-142, 2008.
5 S. Y. No, "Empirical correlations for breakup length of liquid jet in uniform cross flow-A review", Journal of ILASS-KOREA, vol. 18, no. 1, pp. 35-43, 2013. DOI: https://doi.org/10.15435/JILASSKR.2013.18.1.035   DOI
6 S. M. Sumon and S. W. Lee, "Numerical analysis of effects of water mist injection characteristics on cooling performance in heated chamber", Journal of ILASS-KOREA, vol. 17, no. 2, pp. 64-70, 2012. DOI: https://doi.org/10.15435/JILASSKR.2012.17.2.064   DOI
7 S. L. Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, Butterworth Heinemann, 1998.
8 K. X. Steirer, J. J. Berry, M. O. Reese, M. F. A. M. Hest, A. Miedaner, M. W. Liberatore, R. T. Collins, D. S. Ginley, "Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells", Thin Solid Films, vol. 517, pp. 2781-2786, 2009. DOI: https://doi.org/10.1016/j.tsf.2008.10.124   DOI
9 K. Gonda, K. Kadota, Y. Deki, Y. Tozuka, A. Shimosaka, "Fabrication of composite particles by liquid-liquid interfacial crystallization using an ultrasonic spray nozzle", Powder Technology, vol. 269, pp. 401-408, 2015. DOI: https://doi.org/10.1016/j.powtec.2014.09.042   DOI
10 FLUENT, Fluent 17.1 User's Guide, 2016.
11 A. K. M. F. Hussain and V. Ramjee, "Effects of axisymmetric contraction shape on incompressible turbulent flow", TRANS of the ASME, J. Fluids Engineering, vol. 98, pp. 58-69, 1976. DOI: https://doi.org/10.1115/1.3448210   DOI