• Title/Summary/Keyword: 환경유전자

Search Result 1,148, Processing Time 0.04 seconds

Isolation of dhlA Gene Responsible for Degradation of 1, 2-dichloroethane from Metagenomic Library Derived from Daecheong Reservoir (대청호로부터 제작한 메타지놈 라이브러리에서 1, 2-dichloroethane의 분해에 관여하는 dhlA 유전자의 분리)

  • Kang, Cheol-Hee;Moon, Mi-Sook;Song, Ji-Sook;Lee, Sang-Mhan;Kim, Chi-Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.137-145
    • /
    • 2005
  • Traditional screening techniques have missed up to 99% of microbial resources existing in the nature. Strategies of direct cloning of environmental DNAs comprising tine genetic blueprints of entire microbial metagenomes provide vastly more genetic information than is contained in the culturable. Therefore, one way to screening the useful gene in a variety of environments is the construction of metagenomic DNA library. In this study, the water samples were collected from Daecheong Reservoir in the mid Korea, and analyzed by T-RFLP to examine the diversity of the microbial communities. The crude DNAs were extracted by SDS-based freezing-thawing method and then further purified using an $UltraClean^{TM}kit$ (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested with EcoRI, BamHI, and SacII in Escherichia coli DH10B using the pBACe3.6 vector. About 14.0 Mb of metagenomic libraries were obtained with average inserts 13 ${\sim}$ 15 kb in size. The genes responsible for degradation of 1, 2-dichloroethane (1, 2-DCE) via hydrolytic dehalogenation were identified from the metagenomic libraries by colony hybridization. The 1, 2-dichloroethane dehalogenase gene (dhlA) was cloned and its nucleotide sequence was analyzed. The activity of the 1, 2-DCE dehalogenase was highly expressed to the substrate. These results indicated that the dhlA gene identified from the metagenomes derived from Deacheong Reservoir might be useful to develop a potent strain for degradation of 1, 2-DCE.

Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation (Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

Regulation of Cinnamyl Alcohol Dehydrogenase (CAD) Gene Family in Lignin Biosynthesis (리그닌 생합성에서 cinnamyl alcohol dehydrogenase (CAD) 유전자 family의 조절)

  • Kim, Young-Hwa;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.944-953
    • /
    • 2021
  • Lignin is a complex phenylpropanoid polymer abundant in the cell walls of vascular plants. It is mainly presented in conducting and supporting tissues, assisting in water transport and mechanical strength. Lignification is also utilized as a defense mechanism against pathogen infection or wounding to protect plant tissues. The monolignol precursors of lignin are synthesized by cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes cinnamaldehydes to cinnamyl alcohols, such as p-coumaryl, coniferyl, and sinapyl alcohols. CAD exists as a multigenic family in angiosperms, and CAD isoforms with different functions have been identified in different plant species. Multiple isoforms of CAD genes are differentially expressed during development and upon environmental cues. CAD enzymes having different functions have been found so far, showing that one of its isoforms may be involved in developmental lignification, whereas others may affect the composition of defensive lignins and other wall-bound phenolics. Substrate specificity appears differently depending on the CAD isoform, which contributes to revealing the biochemical properties of CAD proteins that regulate lignin synthesis. In this review, details regarding the expression and regulation of the CAD family in lignin biosynthesis are discussed. The isoforms of the CAD multigenic family have complex genetic regulation, and the signaling pathway and stress responses of plant development are closely linked. The synthesis of monolignol by CAD genes is likely to be regulated by development and environmental cues as well.

A Study on STR Analysis According to the Method of Developing Latent Fngerprints Deposited on Non-Porous Surfaces in the Marine Environment (해양환경 내 비다공성 표면에 유류된 잠재지문 현출방법에 따른 STR 분석 연구)

  • Kim, Jin-Sun;Kim, Sea-In;Yoon, Hyun-Kyoung;Choo, Min-kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.733-741
    • /
    • 2022
  • Among the various evidence found in maritime crimes, fingerprints and DNA are very important in that they can identify a suspect. In this study, 5 types of non-porous surfaces (plastic, stainless, glass, ceramic, FRP), which are often found as evidence in the actual marine environment, were selected, and latent and blood fingerprints were passed down and immersed at the Donghae Maritime Police Station's exclusive pier for about 7 days. After that, DNA extraction, quantification, and STR profile were analyzed after fingerprint developing CA fumming method and 4 powder methods (Swedish black powder, Concentrated black powder, Supranano red powder, Dazzle orange powder). Among the fingerprint developing methods, when Supranano red powder was applied, a relatively high amount of DNA was found. As a result of STR profile analysis, an average of 16.8 to 9 loci were secured, and all 20 were confirmed in glass and ceramic materials. As a result of the study, it was possible to secure the STR profile by extracting and quantifying DNA after applying the fingerprint developing method to virtual evidence immersed for about 7 days, and further research is needed to secure the STR profile by analyzing DNA after applying various fingerprint developing methods such as VMD and SPR.

Responses of Misgurnus anguillicaudatus and Cyprinus carpio Fed on Disease Resistant(OsCK1) Rice Variety (병저항성 GM(OsCK1)벼가 미꾸리(Misgurnus anguillicaudatus)및 잉어(Cyprinus carpio)에 미치는 영향)

  • Oh, Sung-Dug;Lee, Kijong;Park, Soo-Yun;Lee, Dae-Yong;Sohn, Soo-In;Kim, Min-Young;Ryu, Tae-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.231-239
    • /
    • 2013
  • BACKGROUND: The disease resistant (OsCK1) rice was generated by inserting choline kinase (CK1) and phosphinothricin acetyltransferase (PAT) genes isolated from Oriza sativa and Streptomyces hygroscopicus into the genome of rice (Nakdongbyeo). With the potential problems of safety, the non-target organism evaluation is required as an essential element for the environmental risk assessment of genetically modified (GM) crops. In present study, we studied the effects on survival of Misgurnus anguillicaudatus and Cyprinus carpio, commonly used as a model organism in ecotoxicological studies. METHODS AND RESULTS: The M. anguillicaudatus and C. carpio were fed on disease resistant (OsCK1) rice and non-genetically modified (non-GM) rice (Nakdongbyeo) to 0, 10, 100, 1,000 and 5,000 mg/L, as treatment concentration respectively. The OsCK1 rice used for the test was confirmed to have the OsCK1/PAT gene expression by the PCR and ELISA analysis. Feeding test showed that no significant differences in cumulative immobility and abnormal response of M. anguillicaudatus and C. carpio fed on between OsCK1 rice and non-GM rice. The 96hr-$LC_{50}$ values showed no difference between OsCK1 rice (>5,000 mg/L) and non-GM rice (>5,000 mg/L). CONCLUSION(S): The results of this study suggested that there was no significant difference in toxicity for M. anguillicaudatus and C. carpio between OsCK1 rice and non-GM counterparts.

Expression control of ssaJ and ssaK of SPI2 in Salmonella typhimurium (Salmonella typhimurium에서 SPI2의 ssaK와 ssaJ의 발현조절)

  • Choi, Hyuk-Jin;Eom, Joon-Ho;Lee, In-Soo;Park, Kyeong-Ryang;Park, Yong-Keun
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.108-114
    • /
    • 1998
  • Salmonella Pathgenicity Island 2 plays an important role in Salmonella pathogenicity, especially invasion into host cell. We have investigated the effect of various environmental factors, such as oxygen level, osmolarity, pH, carbon starvation and glycerol addition on the expression of SPI2. For this research, we constructed the reporter plasmids, in which the promoter-less lac operons are fused with the regulatory regions (including promoter) of ssaJ and ssaK, major genes in SPI2. The study using the reporters showed that low oxygen, low osmolarity, or weak alkali conditions increased the expression levels of ssaJ and ssaK and when these three conditions exist simultaneously, the expression levels of ssaJ and ssaK are the highest. However carbon starvation and glycerol addition did not affect the expression of ssaJ and ssaK. These environmental effects on the expression levels of ssaJ and ssaK are the same in three Salmonella typhimurium wild types, LT2, UK1, and SL1344. In addition, we confirmed that the mutation in hilA, a regulatory gene encoding a transcriptional activator of SPI1, had no effect on the expression of ssaJ and ssaK. Thus, these results strongly suggest that the expressions of SPI2 and SPI1 are regulated by different control systems.

  • PDF

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Expression of Genes Affecting Skin Coloration and Sugar Accumulation in 'Hongro' Apple Fruits at Ripening Stages in High Temperatures (고온에 의한 변색단계별 '홍로' 사과의 착색 및 당 축적 관련 유전자 발현 분석)

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • High temperature is one of the important environmental factors limiting cultivation of apple (Malus domestica Borkh). The expression of genes related with anthocyanin synthesis and sugar accumulation in response to high temperature was studied in the 'Hongro' apple fruits at different developmental stages in different temperature conditions through real-time PCR. Expression of ${\hat{a}}$-amylase (BMY) and polygalacturonase (PG) genes related with sugar synthesis was higher in late ripening stages than in initial ripening stages. Expression of four genes such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and malate dehydrogenase (MDH), which were related with fruit skin coloration, increased gradually in apple fruits of the middle and late ripening stages. Interestingly, the expressions of all genes were highly inhibited expressed at $30-35^{\circ}C$ compared to $25^{\circ}C$ in all ripening stages. In the further work, investigation of expression levels of various genes could be conducted in the level of transcriptomics in fruits at the middle ripening stages to get meaningful information of ripening metabolism in apple in high temperatures.

Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene (CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가)

  • Park, Sung-Chul;Kim, Myoung Duck;Kim, Sun Ha;Kim, Yun-Hee;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Glycine betaine (GB) is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants under salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into GB, has been cloned from a soil bacterium Arthrobacter globiformis. We generated transgenic sweetpotato plants [Ipomoea batatas (L.) Lam] expressing codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated SC plants under oxidative and drought stresses. SC plants showed enhanced tolerance to methyl viologen (MV)-mediated oxidative stress and drought stress due to induced expression of codA. At $5{\mu}M$ of MV treatment, all SC plants showed enhanced tolerance to MV-mediated oxidative stress through maintaining low ion leakage and increased GB levels compared to wild type plants. When plants were subjected to drought conditions, SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased codA expression compared to wild type plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands.