• Title/Summary/Keyword: 혐기발효

Search Result 214, Processing Time 0.029 seconds

Transformation of Nitrogen Derived from Solid Piggery Manure in Soil under Aerobic or Anaerobic Incubation Condition (혐기(嫌氣) 및 호기조건하(好氣條件下)에서 토양처리(土壤處理)된 돈분(豚糞) 중(中) 질소형태변화(窒素形態變化))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 1993
  • The behaviors of inorganic nitrogen derived from solid animal waste in soil has been received too much concern partly because nitrate which occurred from nitrification can act as a pollutant to soil and groundwater and partly because the loss of nitrogen from surface soil by downward movement of water is disadvantageous in the view of plant nutrient. This present study was conducted to get fundamental imformations on nitrogen behavior and to provide improved basical concepts on the management of animal waste. Fresh or fermented pig manure was mixed with a sandy loam soil in the ratio of 2:1(soil:pig manure), packed into test tube and incubated at $30^+/-1^{\circ}C$ for 8 weeks under aerobic- or anaerobic condition. Sample tubes were taken at the one week interval and analyzed on pH, the amount of $CH_4$ produced under anaerobic condition and inorganic nitrogen. The pH of soil treated with fresh pig manure under anaerobic condition was lowered by 1.87 unit compared to that of under aerobic condition, but at the treatment with fermented pig manure, pH change was very little between aerobic and anaerobic condition. The coefficients of regressional equations which were obtained from pH and incubation time were -0.114 in fresh pig manure and -0.089 in fermented pig manure, and the extent of pH decrease due to incubation was greater in fresh pig manure than that of fermented pig waste. No differences in the amounts of $CH_4$ produced under anaerobic condition between fresh and fermented pig manure was observed until 3 weeks of incubation, however, after that the amount of $CH_4$ produced in fresh pig manure was abruptly increased and cumulative amont of $CH_4$ was reached 8.6 mole/g. K values on $CH_4$ production in fresh and fermented pig manure was 0.211 mole/g/day and 0.046 mole/g/day, respectively, for 5 weeks from the 3rd to the 8th week. $NH_4-N$ concentration at aerobic condition with fresh pig manure treatment was lowered by passing time of incubation, but $NO_3-N$ concentration was elevated from 11.2 ppm at initial state to 67.3 ppm after incubation and this trend on $NH_4-N$, $NO_3-N$ concentration was very similar to the treatment of fermented pig manure. While $NH_4-N$ concentration under anaerobic condition was greatly increased. $NO_3-N$ concentartion was not only very low but also no great changes, that was ranged from 4 to 8 ppm.

  • PDF

Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge (유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • As the experimental results of membrane application for the production and recovery of volatile fatty acids, suspended solids concentration, the number of acid producing bacteria and organic acid concentration increased with membrane coupling in the fermenter. The application of membrane for the efficiency increase of solid-liquid separation and fermentation made the number of acid producing bacteria increase in the fermenter, thus acid forming rate showed higher value than that of membrane-free fermenter. Membrane-coupled fermenter was believed to be an effective technology for the improvement of recovery efficiency of volatile fatty acids from organic sludge.

Isolation and Characterization of An Alcohol Fermentation Strain from Anaerobic Acid Fermentor to Treat Food Wastes (음식폐기물 처리용 혐기성 산 발효조로부터 알코올발효 균주의 분리 및 특성)

  • Kim, Jung-Kon;Han, Gui-Hwan;Yoo, Jin-Cheol;Seong, Chi-Nam;Kim, Seong-Jun;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.451-455
    • /
    • 2006
  • An efficient pilot scale (10 ton) three-stage methane fermentation system to digest food waste has been developed in this laboratory. This system consisted of three stages: semianaerobic hydrolysis, anaerobic acidogenesis and strictly anaerobic methanogenesis. From the secondary acidogenesis reactor, a novel strain KA4 responsible for alcohol fermentation was isolated and characterized. The cell was oval and its dimension was $5.5-6.5{\times}3.5-4.5\;{\mu}m$. This strain was identified as Saccharomyces cerevisiae KA4 by 26S rDNA D1/D2 rDNA sequence. Optimal culture temperature was $30-35^{\circ}C$. Cells were tolerant to 5% (v/v) ethanol concentration, however, were inhibited significantly by higher ethanol concentration up to 7%. The strain could grow well up to 50% (w/v) initial glucose concentration in the YM liquid medium, however, optimal concentration for ethanol fermentation was 10%. It could produce ethanol in a broad initial pH range from 4 to 10, and optimal pH was 6. In this condition, the strain converted 10% glucose to 7.4% ethanol during 24 hr, and ethanol yield was estimated to be 2.87 moi EtOH/mol glucose.

Effects of Hypoxia on Root Growth and Anaerobic Fermentative Enzymes in Winter Cereal Seedlings (저산소 조건하에서 맥류 유묘의 근생장 및 혐기발효 효소의 반응)

  • Park Myoung Ryoul;Lim Jeong Hyun;Yoo Nam Hee;Kwon In Sook;Kim Jung Gon;Choi Kyung Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.400-405
    • /
    • 2005
  • Wet-injury often occurs in upland cereals growing in the paddy field due to oxygen deficiency in the rhizosphere caused by excessive water in the soil. Under hypoxia, energy metabolism is diminished causing non­reversible damage to root cells. This study was conducted to investigate effects of hypoxia on root growth and enzymes involved in the fermentative energy metabolism in upland cereals including barley, wheat, rye and triticale. Young seedlings were subject to hypoxia for up to 7 days. Root fresh weight and dry weight were decreased significantly by hypoxia for 5 to 7 days in all cereal seedlings. Root growth retardation under hypoxia was lowest in barley. Hypoxia-induced increases in activity and isozyme expression of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were commonly observed in roots of all cereal seedlings. The inherent ADH activity levels were higher in barley but the hypoxia-induced increases in ADH activities were lowest in barley than other cereals. The inherent LDH activity levels were lower in barley and the hypoxia-induced increases in LDH activities were lower in barley than other cereals. The results suggest the importance of the rapid enhancement of fermentative enzyme systems for increased tolerance to hypoxia.

Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation (ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • This study was conducted to evaluate the performance of methane fermentation from effluent of hydrogen fermentation reactor in anaerobic baffled reactor (ABR) and anaerobic sequencing batch reactor (ASBR). Two reactors were operated at organic loading rate of $1.0kg\;COD/m^3{\cdot}d$ and hydraulic retention time (HRT) of 20 day. Methane production rates of ABR and ASBR for start-up periods were 0.04 L/L/d and 0.19 L/L/d, respectively, whereas maximum methane production rates of ABR and ASBR were 0.25 L/L/d and 0.31 L/L/d, respectively. Removal rates of chemical oxygen demand (COD) in ABR and ASBR for start-up periods were 89% and 92%, respectively. After startup periods, removal rates of COD and volatile solids (VS) in ABR and ASBR were maintained over 90%. The specific methanogenic activity (SMA) increased as microorganism acclimated to the substrate.

Feasibility of fermentative bio-hydrogen production from different organic wastes (다양한 유기성 폐자원에서 바이오 수소 생성 연구)

  • Hwang, Jae-Hoon;Choi, Jeong-A;Abou-Shanab, R.A.I.;Jeon, Byong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.506-510
    • /
    • 2009
  • The effects of various organic wastes on anaerobic fermentative hydrogen production were studied using enriched mixed microflora in batch tests. Rotten fruit, corn powder and organic wastewater enriched with sulfate (up to 1,000 mg/L) were used for experiments. Maximum hydrogen production (547.1 mL) was observed from rotten apple with initial substrate concentration of 132.2 g COD/L. The experimental result on sulfate enriched organic wastewater indicated that hydrogen production is not adversely influenced by relatively high sulfate concentration. Residual sulfate content remained at 96-98 % after 75 hours of reaction, which showed that no major sulfate reduction was occurred at pH 5.3-5.5 in the reactor. The volatile fatty acid (VFA) fractions produced during the reaction was in the order of butyrate > acetate > propionate in all experiments. The results of this study would be useful for controlling the conditions on fermentative hydrogen production using different feedstocks.

  • PDF

Variations of Hydrogen Production in the Presence of Heavy Metals During Anaerobic Fermentation of Food Waste (음식물쓰레기의 혐기성 소화 시 중금속에 따른 수소생산량의 변화)

  • Lee, Pul-eip;Lee, Tae-jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • In this study, variations of hydrogen production were investigated with food waste fermentation in the presence of heavy metals. Hydrogen production was 79.48 mL/g COD with fermentation of food waste. In the presence of 1 mg/L of zinc, the hydrogen production was decreased about 60%. When the copper is present, the production of hydrogen is severely inhibited, while the coexistence of copper with zinc relaxes the inhibition of copper and restores hydrogen production. Butyric acid or acetic acid was observed as the main species during hydrogen production. Klebsiella sp., Clostridium sp., and Dysgonomonas sp. were mainly appeared in the samples not containing heavy metals. However, Enterococcus sp. extremely influenced the hydrogen production activities of samples containing zinc or copper.

Effect of operational pH on anaerobic hydrogen fermentation of food waste (음식폐기물의 혐기성 수소 발효시 운전 pH의 영향)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • The pH is one of the most important factors affecting metabolism pathway and activity of hydrogen producing bacteria. The effect of operational pH on anaerobic hydrogen fermentation of food waste was evaluated at mesophilic condition. In this batch experiment, the initial pH was 8.0 and the operational pH was controlled at 4.7~7.0 by the addition of 5N KOH solutions. At the operational pH of 4.7, the lag phase and the maximum hydrogen production were 47.9h and 534.4 mL, respectively. The lag phase and the maximum hydrogen production were decreased as the operational pH increased. At the operational pH of 7.0, the lag phase and the maximum hydrogen production were 4.2 h and 213.8 mL, respectively.

Effect of Chlorella Culture Solution Using Anaerobic digestate on Seed Germination in Perennial Ryegrass (혐기소화액을 배지로 이용한 클로렐라 배양액 처리가 페레니얼라이그라스 종자 발아에 미치는 영향)

  • Byeon, Ji-Eun;Lee, Jin Woong;Choi, Min Soo;Ryoo, Jong-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • This experiments were conducted to evaluate the influence of Chlorella culture solution using anaerobic digestate as medium on seed germination of perennial ryegrass seeds. Four treatments were compared: control with distilled water, anaerobic digestate, Chlorella culture solution and Chlorella culture filtrate. The germination percentage of perennial ryegrass seeds was highest in the Chlorella culture solution treatment. Days required for 50, 70% seed germination were faster at 1.7 day in Chlorella culture solution compared to control. Root length of perennial ryegrass seeds was longer by 1~2cm in the Chlorella culture solution compared with control. The relative root length was by 40% longer in the Chlorella culture solution treatment compared to control. The germination index (GI) of perennial ryegrass seeds was higher by 180~202% in the Chlorella culture solution treatment compared to control. The decay rate was low as 50.0% in Chlorella culture solution, but decay rate of perennial ryegrass seeds showed 86.7~83.3% in control plot and in anaerobic digestate, respectively. Chlorella culture solution have shown stimulatory effects in germination and development of root. Overall, Chlorella culture solution could be useful to apply for promotion of germination and root elongation of seeds.