DOI QR코드

DOI QR Code

Variations of Hydrogen Production in the Presence of Heavy Metals During Anaerobic Fermentation of Food Waste

음식물쓰레기의 혐기성 소화 시 중금속에 따른 수소생산량의 변화

  • Lee, Pul-eip (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 이풀잎 (서울과학기술대학교 에너지환경공학과) ;
  • 이태진 (서울과학기술대학교 에너지환경공학과)
  • Received : 2017.01.23
  • Accepted : 2017.02.22
  • Published : 2017.02.28

Abstract

In this study, variations of hydrogen production were investigated with food waste fermentation in the presence of heavy metals. Hydrogen production was 79.48 mL/g COD with fermentation of food waste. In the presence of 1 mg/L of zinc, the hydrogen production was decreased about 60%. When the copper is present, the production of hydrogen is severely inhibited, while the coexistence of copper with zinc relaxes the inhibition of copper and restores hydrogen production. Butyric acid or acetic acid was observed as the main species during hydrogen production. Klebsiella sp., Clostridium sp., and Dysgonomonas sp. were mainly appeared in the samples not containing heavy metals. However, Enterococcus sp. extremely influenced the hydrogen production activities of samples containing zinc or copper.

본 연구에서는 음식물 쓰레기 혐기성 발효를 통한 수소생산에서 중금속이 미치는 영향에 대하여 살펴보았다. 음식물 쓰레기의 혐기성발효에 따른 수소생산량은 79.48 mL/g COD이였다. 1 mg/L의 아연이 함유되었을 때 약 60%의 수소생산량의 저해가 나타나는 것으로 나타났으며 구리가 아연보다 수소생산을 심각하게 저해하였다. 구리가 독립적으로 있을 때 수소생산량이 심각하게 저해되는 것에 반하여 아연과 공존함으로서 구리의 저해작용이 완화되어 수소생산량이 회복되었다. 수소생성과정 동안 butyric acid 또는 acetic acid가 주종으로 관찰되었으며 중금속이 함유되지 않은 시료에서는 Klebsiella sp., Clostridium sp., 그리고 Dysgonomonas sp.과 같은 군집이 출현하였으나 아연이나 구리가 함유되었을 경우 Enterococcus 종이 시료의 수소생산 활동에 큰 영향을 준 것으로 판단되었다.

Keywords

References

  1. Byeon, J. R., "Korea energy guide," Korea Energy Agency, p. 18(2015).
  2. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth," Penguin Putnam, New Work, NY US, pp. 15-17(2002).
  3. Wang, M., Wang, Z., Gong, X. and Guo, Z., "The intensification technologies to water electrolysis for hydrogen production - A review," Renew. and Sust. Energy Rev., 29, 573-588(2014). https://doi.org/10.1016/j.rser.2013.08.090
  4. Mizuno, O., Ohara, T., Shinya, M. and Noike, T., "Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora," Water Sci. Technol., 42(3), 345-350(2000).
  5. Lay, J. J., Lee, Y. J. and Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste," Water Res., 33(11), 2579-2586(1999). https://doi.org/10.1016/S0043-1354(98)00483-7
  6. Kumar, A. M., "Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass," Int. J. Environ. Sci. Technol., 10(6), 1382-1398 (2013).
  7. Karen, T., anna, P. and Armen, T., "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Appl. Energy, 177, 335- 340(2016). https://doi.org/10.1016/j.apenergy.2016.05.129
  8. Chen, J. L., Ortiz, R., Steele, T. W. J. and Stuckey, D. C., "Toxicants inhibiting anaerobic digestion: A review," Biotechnol. Adv., 32(8), 1523-1534(2014). https://doi.org/10.1016/j.biotechadv.2014.10.005
  9. Yang, G.-F., Ni, W.-M., Wu, K., Wang, H., Yang, B.-E., Jia, X.-Y. and Jin, R.-C., "The effect of Cu(II) stress on the activity, performance and recovery on the Anaerobic Ammonium- Oxidizing (Anammox) process," Chem. Eng. J., 226, 39-45(2013). https://doi.org/10.1016/j.cej.2013.04.019
  10. Logan, B. E., Oh, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36(11), 2530-2535 (2002). https://doi.org/10.1021/es015783i
  11. Fang, H. H. P. and Liu, H., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82(1), 87-93(2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  12. Bae, J. H., Yoo, M. S., Ryu, D. S., Lee, J. K. and Kim, C. K., "Waste Recycling - Biogas Production and Utilization," 1st, donghwapub, gyeonggi, pp. 30-45(2010).
  13. Cho, Y. N. and Lee, T. J., "Variations of hydrogen production and microbial community with heavy metals during fermentative hydrogen production," J. Ind. Eng. Chem., 17(2), 340-345(2011). https://doi.org/10.1016/j.jiec.2011.02.036
  14. Lee, S. M., Park, J. L. and Ann., J. S., "Alcohol production from organic wastes by anaerobic digestion," J. Korea Soc. Waste Manage., 145-148, 3(2), 49-64(1987)
  15. Chen, C. C. and Lin, C. Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7(3), 695-699(2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  16. Mannix, S. P., Shin, H., Masaru, H., Rumiko, S., Chie, Y., Koichiro, H., Masaharu, I. and Yasuo, I. "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter," J. Biosci. Bioeng., 91(2), 159-165 (2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  17. Chen, Y., Cheng, J. J. and Creamer, K. S., "Inhibition of anaerobic digestion process: a review," Bioresour. Technol., 99(10), 4044-4064(2008). https://doi.org/10.1016/j.biortech.2007.01.057
  18. Kim, D.-H., Kim, S.-H. and Shin, H.-S., "Sodium inhibition of fermentative hydrogen production," Int. J. Hydrogen Energy, 34(8), 3295-3304(2009). https://doi.org/10.1016/j.ijhydene.2009.02.051
  19. Yenigun, O. and Demirel, B., "Ammonia inhibition in anaerobic digestion: A review," Proc. Biochem., 48(5-6), 901- 911(2013). https://doi.org/10.1016/j.procbio.2013.04.012
  20. Zhang, C., Su, H., Baeyens, J. and Tan, T., "Reviewing the anaerobic digestion of food waste for biogas production, Renew. and Sust. Energy Rev., 38, 383-392(2014). https://doi.org/10.1016/j.rser.2014.05.038
  21. Wonga, Y. M., Wub, T. Y. and Juana, J. C., "A review of sustainable hydrogen production using seed sludge via dark fermentation," Renew. and Sust. Energy Rev., 34, 471-482 (2014). https://doi.org/10.1016/j.rser.2014.03.008
  22. Wang, A., Gao, L., Ren, N., Xu, J. and Liu, C. "Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49," Biotechnol. Lett., 31(9), 1321- 1326(2009). https://doi.org/10.1007/s10529-009-0028-z