DOI QR코드

DOI QR Code

Effect of operational pH on anaerobic hydrogen fermentation of food waste

음식폐기물의 혐기성 수소 발효시 운전 pH의 영향

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Lee, Se-Wook (Department of Civil Engineering, The University of Suwon)
  • 이채영 (수원대학교 토목공학과) ;
  • 이세욱 (수원대학교 토목공학과)
  • Received : 2011.09.16
  • Accepted : 2011.09.29
  • Published : 2011.09.30

Abstract

The pH is one of the most important factors affecting metabolism pathway and activity of hydrogen producing bacteria. The effect of operational pH on anaerobic hydrogen fermentation of food waste was evaluated at mesophilic condition. In this batch experiment, the initial pH was 8.0 and the operational pH was controlled at 4.7~7.0 by the addition of 5N KOH solutions. At the operational pH of 4.7, the lag phase and the maximum hydrogen production were 47.9h and 534.4 mL, respectively. The lag phase and the maximum hydrogen production were decreased as the operational pH increased. At the operational pH of 7.0, the lag phase and the maximum hydrogen production were 4.2 h and 213.8 mL, respectively.

혐기성 수소 발효시 pH는 물질 대사 경로와 수소 생성 미생물의 활성에 직접적으로 영향을 미치는 가장 중요한 요소 중 하나로 알려져 있다. 본 연구는 음식폐기물로부터 운전 pH에 따른 혐기성 회분식수소 발효의 영향을 평가하기 위해 수행하였다. 5 N KOH 용액을 이용하여 초기 pH는 8.0으로 고정하였으며, 운전 pH는 4.7~7.0으로 유지하였다. 운전 pH가 낮을수록 지체 시간은 단축되는 것으로 나타났으며, 최대 수소 발생량은 낮게 나타났다. 운전 pH 4.7일 경우에는 지체 시간이 47.9 h으로 가장 길게 나타났으나, 최대 수소 발생량은 534.4 mL로 가장 높게 나타났다. 운전 pH가 증가함에 따라 지체 시간과 최대 수소 발생량은 감소하였다. 운전 pH 7.0일 경우에는 지체 시간이 4.2 h으로 나타났으며, 최대 수소 발생량은 213.8 mL로 나타났다.

Keywords

References

  1. Sharma, Y. and Li, B., "Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis", International Journal of Hydrogen Energy, 34(15), pp. 6171- 6180. (2009). https://doi.org/10.1016/j.ijhydene.2009.06.031
  2. 조영화, 조병훈, 차형준, "생물학적인 방법을 통한 대체 에너지로서의 수소생산", 유기성자원학회지, 19(1), pp. 57-63, (2011).
  3. Hawkes, F. R., Dinsdale, R., Hawkes, D. L. and Hussy, I., "Sustainable fermentative hydrogen production: challenges for process optimisation", International Journal of Hydrogen Energy, 27(11-12), pp. 1339- 1347. (2002). https://doi.org/10.1016/S0360-3199(02)00090-3
  4. 환경부, 2009년 전국 폐기물 발생 및 처리현황, pp. 8 12. (2010).
  5. Wang, J. and Wan, W., "Factors influencing fermentative hydrogen production: A review", International Journal of Hydrogen Energy, 34(2), pp. 799-811. (2009). https://doi.org/10.1016/j.ijhydene.2008.11.015
  6. Zhang, T., Liu, H. and Fang, H. H. P., "Biohydrogen production form starch in wastewater under thermophilic condition", Journal of Environmental Management, 69(2), pp. 149-156. (2003). https://doi.org/10.1016/S0301-4797(03)00141-5
  7. Wang, C. H., Lin, P. J. and Chang, J. S., "Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge", Process Biochemistry, 41(6), pp. 1353-1358. (2006). https://doi.org/10.1016/j.procbio.2006.01.016
  8. Khanal, S. K., Chen, W. H., Li, L. and Sung, S., "Biological hydrogen production: effect of pH and intermediate products", International Journal of Hydrogen Energy, 29(11), pp. 1123-1131. (2004).
  9. Zhao, Q. B. and Yu, H. Q., "Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values", Bioresource Technology, 99(5), pp. 1353- 1358. (2008). https://doi.org/10.1016/j.biortech.2007.02.005
  10. Chen, W. H., Sung, S. and Chen, S. Y., "Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects", International Journal of Hydrogen Energy, 34(1), pp. 227- 234. (2009). https://doi.org/10.1016/j.ijhydene.2008.09.061
  11. Kim, D. H., Kim, S. H., Jung, K. W., Kim, M. S. and Shin, H. S., "Effect of initial pH independent of operational pH on hydrogen fermentation of food waste", Bioresource Technology, 102(18), pp. 8646-8652. (2011). https://doi.org/10.1016/j.biortech.2011.03.030
  12. 주흥수, 류재영, 배재근, "음식물쓰레기의 자원화를 위한 배출업종별 성상 및 특성의 비교 분석", 유기성자원학회지, 9(4), pp. 117-124. (2001).
  13. Chou, C. H., Wang, C. W., Huang, C. C. and Lay, J. J., "Pilot study of the influence of stirring and pH on anaerobices converting high-solid organic wastes to hydrogen", International Journal of Hydrogen Energy, 33(5), pp. 1550-1558. (2008). https://doi.org/10.1016/j.ijhydene.2007.09.031
  14. Pan, J., Zhang, R., El-Mashad, H. M., Sun, H. and Ying, Y., "Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation", International Journal of Hydrogen Energy, 33(23), pp. 6968-6975. (2008). https://doi.org/10.1016/j.ijhydene.2008.07.130
  15. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th edition, Am. Public Health Assoc.,Washington, D. C., USA (1992).
  16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., "Colormetric method for determination of sugars and related substances", Anal, Chem., 28(3), pp. 350-356. (1956). https://doi.org/10.1021/ac60111a017
  17. 전윤선, 이태진, "혐기성 수소생산에 pH가 미치는 영향", 대한환경공학회 춘계학술연구발표회, pp. 1219 1224. (2006).
  18. Li, Z., Wang, H., Tang, Z., Wang. X. and Bai, J., "Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose", International Journal of Hydrogen Energy, 33(24), pp. 7413-7418. (2008). https://doi.org/10.1016/j.ijhydene.2008.09.048
  19. Fang, H. H. P., Li, C. and Zhang, T., "Acidophilic biohydrogen production from rice slurry", International Journal of Hydrogen Energy, 31(6), pp. 683-692. (2006). https://doi.org/10.1016/j.ijhydene.2005.07.005
  20. Lin , C. Y., Chang, C. C. and Hung, C. H., "Fermentative hydrogen production from starch using natural mixed cultures", International Journal of Hydrogen Energy, 33(10), pp. 2445-2453. (2008) https://doi.org/10.1016/j.ijhydene.2008.02.069
  21. Swinnen, I. A. M., Bernaerts, K., Dens, E. J. J., geeraerd, A. H. and Impe, J. F., "Predictive modelling of the microbial lag phase: a review", International Journal of Food Microbiology, 94(2), pp. 137-159. (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.01.006