Effects of Hypoxia on Root Growth and Anaerobic Fermentative Enzymes in Winter Cereal Seedlings

저산소 조건하에서 맥류 유묘의 근생장 및 혐기발효 효소의 반응

  • 박명렬 (전북대학교 생물자원과학부) ;
  • 임정현 (전북대학교 생물자원과학부) ;
  • 유남희 (전북대학교 농업과학기술연구소) ;
  • 권인숙 (한일장신대학교) ;
  • 김정곤 (작물과학원 호남농업연구소) ;
  • 최경구 (전북대학교 생물자원과학부) ;
  • 윤성중 (전북대학교 생물자원과학부)
  • Published : 2005.12.01

Abstract

Wet-injury often occurs in upland cereals growing in the paddy field due to oxygen deficiency in the rhizosphere caused by excessive water in the soil. Under hypoxia, energy metabolism is diminished causing non­reversible damage to root cells. This study was conducted to investigate effects of hypoxia on root growth and enzymes involved in the fermentative energy metabolism in upland cereals including barley, wheat, rye and triticale. Young seedlings were subject to hypoxia for up to 7 days. Root fresh weight and dry weight were decreased significantly by hypoxia for 5 to 7 days in all cereal seedlings. Root growth retardation under hypoxia was lowest in barley. Hypoxia-induced increases in activity and isozyme expression of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were commonly observed in roots of all cereal seedlings. The inherent ADH activity levels were higher in barley but the hypoxia-induced increases in ADH activities were lowest in barley than other cereals. The inherent LDH activity levels were lower in barley and the hypoxia-induced increases in LDH activities were lower in barley than other cereals. The results suggest the importance of the rapid enhancement of fermentative enzyme systems for increased tolerance to hypoxia.

본 연구에서는 맥류 습해의 원인인 과습에 의한 근권의 산소부족이 맥류 뿌리의 생장 및 혐기 발효대사 효소(alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH)에 미치는 영향을 조사하였다. 양액재배를 이용하여 1.5엽기 맥류 유묘에 용존산소 1.5-2 ppm 정도의 혐기처리를 1, 3, 5, 7일간 실시하였다. 혐기조건에서 뿌리의 생장은 모든 맥종에서 감소하였으며, 감소정도는 내습성이 낮은 보리가 내습성이 높은 밀과 호밀보다 낮았다. 정상조건에서 ADH 활성은 보리가 LDH 활성은 호밀이 가장 높았으나 두 효소 모두 맥종 간의 차이는 크지 않았다. 혐기처리에 의해 ADH와 LDH 활성은 모든 맥종에서 공통적으로 증가하였으며 증가 정도는 호밀과 밀에서 가장 높았고 보리에서 가장 낮았다. 혐기조건에서 이들 효소의 활성증가는 모든 맥종에서 유사하게 항시발현 동위효소의 증가 및 새로운 동위효소의 발현유도에 의해 나타났다. 혐기조건에서 ADH와 LDH 활성 증가 정도는 맥종의 재해저항성과 정의 상관관계가 인정되었다. 이러한 결과는 맥류의 내습성에 혐기 발효계 효소가 관여하고 있음을 의미하는 것으로 판단된다.

Keywords

References

  1. 北條良夫,石塚潤彌 1985. 最新 作物生理學實驗法. 農業技術協會. pp. 385-391
  2. Akhtar, J., J. Gorham, R. H. Qureshi, and M. Aslam. 1998. Does tolerance of wheat to salinity and hypoxia correlate with root dehydrogenase activities or aerenchyma formation? Plant Soil 201 : 275-284 https://doi.org/10.1023/A:1004333318973
  3. Biemelt, S., U. Keetman, H. P. Mock, and B. Grimm. 2000. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ. 23 : 135-144 https://doi.org/10.1046/j.1365-3040.2000.00542.x
  4. Bouny, J. and P. H. Saglio. 1996. Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiol. 111 : 187-194 https://doi.org/10.1104/pp.111.1.187
  5. Bradford, M. 1976. A rapid and sensitive method for the quantitytation of microgram quantities of protein utilizing the principle of protein dye bingding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bray, E., J. B. Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses. In Biochemistry and Molecular Biology (B.B. Buchanan, W. Gruissem, R.L. Jones eds.). American Soc. Plant Physiol. Rockville, USA
  7. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Biochemistry and molecularbiology of plants. American Society of Plant Physiologists, pp. 1177-1189
  8. Choi, H. R., J. H. Lim, J. G. Kim, K. G. Choi, and S. J. Yun. 2004. Growth and anaerobic glycolysis in barley seedling in response to acute hypoxia. Kor. J. Crop Sci. 49 : 522-527
  9. Kalashnikov, J, E., T. I. Balakhnia, and D. A. Zakrzhevsky. 1994. Effect of soil hypoxia on activiation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare. Russian J. Plant Physiol. 41 : 583-588
  10. Davies D. D., S. Grego, and P. Kenworthy. 1974. The control of the production of lactate and ethanol by higher plants. Planta 118 : 297-310 https://doi.org/10.1007/BF00385580
  11. 하용웅. 2000 보리. 거목문화사. pp. 282-285
  12. Hole, D. J., B. G. Cobb, P. S. Hole, and M. C. Drew. 1992. Enhancement of anaerobic respiration in root tips of Zea mays following low-oxygen(hypoxia) acclimation. Plant Physiol. 99 : 213-218 https://doi.org/10.1104/pp.99.1.213
  13. Inze, D. and M. V. Montagu. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol. 6 : 153-158 https://doi.org/10.1016/0958-1669(95)80024-7
  14. Ricard, B., T. Vantoai, P. Chourey, and P. Saglio. 1998. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol. 116 : 1323-1331 https://doi.org/10.1104/pp.116.4.1323
  15. Roberts, J. K. M., F. H. Andrade, and I. C. Andenson. 1985. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77 : 492-494 https://doi.org/10.1104/pp.77.2.492
  16. Tadege, M., R. Branddle, and C. Kuhlemeier. 1998. Anoxia tolemace in tobacco roots: effect of overexpression of pyruvate decarboxylase. Plant J. 14 : 327-335 https://doi.org/10.1046/j.1365-313X.1998.00130.x
  17. Thomson, C. J. and B. J. Atwell. 1989. Analysis of growth components in roots of wheat seedlings exposed to low $O_2$ concentrations. Environmental and Experimental Botany. 29 : 387-389 https://doi.org/10.1016/0098-8472(89)90013-0